Developing Sorting Algorithm for SmartEdu Conveyor using Computer Vision Technology
DOI:
https://doi.org/10.52958/iftk.v21i3.12434Keywords:
Sorting algorithm, MQTT, Nod Red, Rapsberry Pi 4, Yolo V8Abstract
This study aims to develop a sorting algorithm for the SmartEdu Conveyor using computer vision technology to enhance accuracy and efficiency in automated sorting systems. The system integrates a Raspberry Pi 4 as the main processing unit and employs the YOLOv8 object detection algorithm to classify geometric objects moving on a conveyor belt. Images captured by an overhead camera are processed in real time, and the results are transmitted through the MQTT protocol using the Paho MQTT library. Node-RED functions as the Human-Machine Interface (HMI), while a Programmable Logic Controller (PLC) drives double-acting pneumatic cylinders to perform the sorting mechanism. Experimental tests conducted at three conveyor speeds demonstrate that the system achieves an average accuracy confidence of 89.38% at 1 cm/s, 78.57% at 1.7 cm/s, and 59.28% at 2.3 cm/s. Further performance evaluation using the Precision–Recall curve yields a mean Average Precision (mAP) of 0.993 at an Intersection over Union (IoU) threshold of 0.5, indicating highly accurate object detection capability. The proposed YOLOv8-based sorting system demonstrates reliable real-time operation, high precision, and robust communication between vision and control modules. It will be implemented as a SmartEdu teaching aid prototype to support automation learning and industrial training applications. This work contributes to educational automation by integrating an open-source vision algorithm with industrial control architecture.
References
N. Boysen, D. Briskorn, S. Fedtke, and M. Schmickerath, “Automated sortation conveyors: A survey from an operational research perspective,” Aug. 01, 2019, Elsevier B.V. doi: 10.1016/j.ejor.2018.08.014.
T. P. Tho, N. T. Thinh, and N. H. Bich, “Design and Development of the Vision Sorting System,” in Proceedings - 3rd International Conference on Green Technology and Sustainable Development, GTSD 2016, Institute of Electrical and Electronics Engineers Inc., Dec. 2016, pp. 217–223. doi: 10.1109/GTSD.2016.57.
R. Mada, S. A. Sukarno, and Muhammad Hafidhin Affan, “A Pendeteksi produk Dengan Kamera Inspeksi pada line produksi,” JTRM (Jurnal Teknologi dan Rekayasa Manufaktur), vol. 6, no. 1, pp. 53–66, Jun. 2024. doi:10.48182/jtrm.v6i1.175.
M. Huang, J. Wu, Y. Tang, and L. Shi, “Optimal Design of a Conveyor-Based Automatic Sorting System,” in IEEE International Conference on Control and Automation, ICCA, IEEE Computer Society, Oct. 2020, pp. 1124–1129. doi: 10.1109/ICCA51439.2020.9264520.
F. Fatimah, I. Maulana, M. D. Arofah, and A. Putramala, “Pemrograman modul kamera pada prototipe mesin sortir bungkus permen berbasis image processing,” Proc. Seminar Nasional Teknik Elektro, vol. 6, pp. 145-151, 2021. [Online]. Available: https://prosiding.pnj.ac.id/index.php/SNTE/article/download/958/468/2318
V. Kakani, V. H. Nguyen, B. P. Kumar, H. Kim, and V. R. Pasupuleti, “A critical review on computer vision and artificial intelligence in food industry,” Dec. 01, 2020, Elsevier B.V. doi: 10.1016/j.jafr.2020.100033.
L. Tan, T. Huangfu, L. Wu, and W. Chen, “Comparison of RetinaNet, SSD, and YOLO v3 for real-time pill identification,” BMC Med Inform Decis Mak, vol. 21, no. 1, Dec. 2021, doi: 10.1186/s12911-021-01691-8.
J. A. Kim, J. Y. Sung, and S. H. Park, “Comparison of Faster-RCNN, YOLO, and SSD for Real-Time Vehicle Type Recognition,” in 2020 IEEE International Conference on Consumer Electronics - Asia, ICCE-Asia 2020, Institute of Electrical and Electronics Engineers Inc., Nov. 2020. doi: 10.1109/ICCE-Asia49877.2020.9277040.
M. Li, Z. Zhang, L. Lei, X. Wang, and X. Guo, “Agricultural greenhouses detection in high‐resolution satellite images based on convolutional neural networks: Comparison of faster R‐CNN, YOLO v3 and SSD,” Sensors (Switzerland), vol. 20, no. 17, pp. 1–14, Sep. 2020, doi: 10.3390/s20174938.
A. N. R. Reddy, D. Marla, M. N. Favorskaya, S. Chandra, and S. Editors, “Smart Innovation, Systems and Technologies 213 Intelligent Manufacturing and Energy Sustainability Proceedings of ICIMES 2020,” 2020. [Online]. Available: http://www.springer.com/series/8767
T. J. Nuva, Md. I. Ahmed, and S. S. Mahmud, “Design & Fabrication of Automatic Color & Weight-Based Sorting System on Conveyor Belt,” Journal of Integrated and Advanced Engineering (JIAE), vol. 2, no. 2, pp. 147–157, Sep. 2022, doi: 10.51662/jiae.v2i2.87.
A. Chairi and R. Mukhaiyar, “Sistem Kontrol Color Sorting Machine dengan Pengolahan Citra Digital,” vol. 4, no. 1, pp. 387–396, 2023, doi: 10.24036/jtein.v4i1.393.
A. V. Seredkin, M. P. Tokarev, I. A. Plohih, O. A. Gobyzov, and D. M. Markovich, “Development of a method of detection and classification of waste objects on a conveyor for a robotic sorting system,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Nov. 2019. doi: 10.1088/1742-6596/1359/1/012127.
H. Lou et al., “DC-YOLOv8: Small-Size Object Detection Algorithm Based on Camera Sensor,” Electronics (Switzerland), vol. 12, no. 10, May 2023, doi: 10.3390/electronics12102323.
Yanto, F. Aziz, and Irmawati, “YOLOv8: Peningkatan algoritma untuk deteksi pemakaian masker wajah,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 7, no. 3, pp. 250–257, 2023. doi: 10.36040/jati.v7i3.6254
D. Krstinić, M. Braović, L. Šerić, and D. Božić-Štulić, “Multi-label Classifier Performance Evaluation with Confusion Matrix,” Academy and Industry Research Collaboration Center (AIRCC), Jun. 2020, pp. 01–14. doi: 10.5121/csit.2020.100801.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ridwan, Yuliadi Erdani, Sarosa Castrena Abadi, Mochammad Dimas Anugrah, Abdur Rohman Harits Martawireja, Rizqi Aji Pratama

This work is licensed under a Creative Commons Attribution 4.0 International License.
KEBIJAKAN YANG DIAJUKAN UNTUK JURNAL YANG MENAWARKAN AKSES TERBUKA
Syarat yang harus dipenuhi oleh Penulis sebagai berikut:
- Penulis menyimpan hak cipta dan memberikan jurnal hak penerbitan pertama naskah secara simultan dengan lisensi di bawah Creative Commons Attribution License yang mengizinkan orang lain untuk berbagi pekerjaan dengan sebuah pernyataan kepenulisan pekerjaan dan penerbitan awal di jurnal ini.
- Penulis bisa memasukkan ke dalam penyusunan kontraktual tambahan terpisah untuk distribusi non ekslusif versi kaya terbitan jurnal (contoh: mempostingnya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan penerbitan awalnya di jurnal ini.
- Penulis diizinkan dan didorong untuk mem-posting karya mereka online (contoh: di repositori institusional atau di website mereka) sebelum dan selama proses penyerahan, karena dapat mengarahkan ke pertukaran produktif, seperti halnya sitiran yang lebih awal dan lebih hebat dari karya yang diterbitkan. (Lihat Efek Akses Terbuka).






