Integration of the Convolutional Block Attention Module to Enhance Malaria Detection in Microscopic Blood Cell Images

Authors

  • Pujo Hari Saputro Universitas Sam Ratulangi
  • Norris Elden Salassa Universitas Sam Ratulangi
  • Fajar Salinding Buntu Payuk Universitas Sam Ratulangi

DOI:

https://doi.org/10.52958/iftk.v21i3.11106

Keywords:

Malaria Detection, Convolutional Neural Network, CBAM, Image Classification

Abstract

Malaria is a life-threatening disease caused by Plasmodium parasites and transmitted through the bite of infected mosquitoes. Accurate and early detection is essential for effective treatment and control. In this study, we propose an enhanced deep learning approach using a Convolutional Neural Network (CNN) optimized with a Convolutional Block Attention Module (CBAM) to classify red blood cell images as malaria-infected or uninfected. The CBAM mechanism enables the model to focus more effectively on the most informative spatial and channel features, thereby improving its ability to detect subtle patterns in microscopic blood smear images. We compare the performance of the CBAM-optimized CNN against a baseline CNN using accuracy, precision, recall, and F1-score metrics. Experimental results show that integrating CBAM significantly improves classification performance, achieving higher detection accuracy and greater robustness against visual noise and variations. This study highlights the effectiveness of attention-based optimization in medical image classification tasks, particularly in resource-limited settings where reliable and automated diagnosis is highly needed.

References

World Health Organization (WHO), “World Malaria Report 2023,” World Health Organization, 2023.

H. A. Nugroho and R. Nurfauzi, “A combination of optimized threshold and deep learning-based approach to improve malaria detection and segmentation on PlasmoID dataset,” FACETS, vol. 8, pp. 1–12, Jan. 2023, doi: 10.1139/facets-2022-0206.

A. Maqsood, M. S. Farid, M. H. Khan, and M. Grzegorzek, “Deep Malaria Parasite Detection in Thin Blood Smear Microscopic Images,” Applied Sciences, vol. 11, no. 5, p. 2284, Mar. 2021, doi: 10.3390/app11052284.

N. A. Arifuddin, I. W. R. Pinastawa, N. Anugraha, and M. G. Pradana, “Classification of Stroke Opportunities with Neural Network and K-Nearest Neighbor Approaches,” SinkrOn, vol. 8, no. 2, pp. 688–693, Apr. 2023, doi: 10.33395/sinkron.v8i2.12228.

M. Man, M. A. Jalil, and W. A. W. A. Bakar, “Fi-Eclat: An enhancement of incremental Eclat algorithm,” 2023, p. 060006. doi: 10.1063/5.0110230.

A. -, F. Marisa, and D. Purnomo, “Penerapan Algoritma Apriori Terhadap Data Penjualan di Toko Gudang BM,” JOINTECS (Journal of Information Technology and Computer Science), vol. 1, no. 1, pp. 1–5, 2016, doi: 10.31328/jointecs.v1i1.408.

N. K. C. PRATIWI, N. IBRAHIM, Y. N. FU’ADAH, and S. RIZAL, “Deteksi Parasit Plasmodium pada Citra Mikroskopis Hapusan Darah dengan Metode Deep Learning,” ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, vol. 9, no. 2, p. 306, Apr. 2021, doi: 10.26760/elkomika.v9i2.306.

N. Huda, S. Y. Prayogi, M. A. Ahmad, and A. Y. Dewi, “Klasifikasi Malaria Menggunakan Metode Image Processing Dari Sel Darah Merah Dengan Algoritma Convolutional Neural Network,” JOINS (Journal of Information System), vol. 7, no. 2, pp. 166–177, Nov. 2022, doi: 10.33633/joins.v7i2.7068.

M. Harahap, J. Jefferson, S. Barti, S. Samosir, and C. A. Turnip, “Implementation of Convolutional Neural Network in the classification of red blood cells have affected of malaria,” SinkrOn, vol. 5, no. 2, pp. 199–207, Apr. 2020, doi: 10.33395/sinkron.v5i2.10713.

L. Zedda, A. Loddo, and C. Di Ruberto, “YOLO-PAM: Parasite-Attention-Based Model for Efficient Malaria Detection,” J Imaging, vol. 9, no. 12, p. 266, Nov. 2023, doi: 10.3390/jimaging9120266.

D. Puspasari Wijaya, P. Febriana Dewi, and N. Mega Saraswati, “Analyzing the Effectiveness of Apriori and ECLAT Algorithms in Frequent Itemset Mining,” Journal of Computing Innovations and Emerging Technologies, vol. 1, no. 1, pp. 16–20, Jul. 2025, doi: 10.64472/jciet.v1i1.4.

W. Siłka, M. Wieczorek, J. Siłka, and M. Woźniak, “Malaria Detection Using Advanced Deep Learning Architecture,” Sensors, vol. 23, no. 3, p. 1501, Jan. 2023, doi: 10.3390/s23031501.

G. Hcini, I. Jdey, and H. Ltifi, “Improving Malaria Detection Using L1 Regularization Neural Network,” JUCS - Journal of Universal Computer Science, vol. 28, no. 10, pp. 1087–1107, Oct. 2022, doi: 10.3897/jucs.81681.

D. A. Tyas and T. Ratnaningsih, “Analisis Segmentasi Sel Darah Merah berbasis Mask-RCNN,” Journal of Informatics Information System Software Engineering and Applications (INISTA), vol. 5, no. 1, pp. 1–7, Nov. 2022, doi: 10.20895/inista.v5i1.766.

A. W. Setiawan et al., “Deteksi Malaria Berbasis Segmentasi Warna Citra dan Pembelajaran Mesin,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 8, no. 4, pp. 769–776, Jul. 2021, doi: 10.25126/jtiik.2021844377.

M. C. Untoro and M. Muttaqin, “Detection Malaria Base Microscope Digital Image with Convolutional Neural Network,” SinkrOn, vol. 7, no. 3, pp. 935–943, Jul. 2022, doi: 10.33395/sinkron.v7i3.11488.

S. Kumar, H. Vardhan, S. Priya, and A. Kumar, “Malaria detection using Deep Convolution Neural Network,” Jan. 2024.

A. Yusuf, Y. Azhar, and Z. Sari, “Deteksi Penyakit Malaria Menggunakan Klasifikasi Berbasis CNN,” Syntax Literate ; Jurnal Ilmiah Indonesia, vol. 9, no. 1, pp. 168–177, Jan. 2024, doi: 10.36418/syntax-literate.v9i1.14771.

M. G. Pradana, H. Khoirunnisa, and I. W. R. Pinastawa, “Evaluation of Convolutional Neural Network Model Architecture Performance,” pp. 628–632, 2023, doi: 10.1109/icimcis60089.2023.10349075.

H. K. Musthofa Galih Pradana, “ANALISIS PERFORMA ALGORITMA CONVOLUTIONAL NEURAL NETWORKS MENGGUNAKAN ARSITEKTUR LENET DAN VGG16,” Indonesian Journal of Business Intelligence (IJUBI), vol. 6, no. 2, pp. 54–60, 2023.

S. Prabhu, M. Mohamed, and H. Misra, “Multi-class Text Classification using BERT-based Active Learning,” Apr. 2021.

Downloads

Published

2025-12-03

Issue

Section

INFORMATIK