Disinformation on TikTok: Analyzing Hoaxes Surrounding the 2024 Indonesian Election

Authors

  • Charisma Dina Wulandari Department of Postgraduate Communication, Universitas Pembangunan Nasional Veteran Jakarta
  • Munadhil Abdul Universitas Pembangunan Nasional “Veteran” Jakarta
  • Radita Gora Tayibnapis Department of Postgraduate Communication, Universitas Pembangunan Nasional Veteran Jakarta
  • Valerii Leodonovic Muzykant RUDN University, Russia

DOI:

https://doi.org/10.33822/jep.v8i2.10163

Keywords:

2024 elections, disinformation, hoaxes, message analysis, politics, social media, tiktok

Abstract

This research investigates the dissemination of hoax content related to the 2024 Indonesian General Election (#Pemilu2024) on TikTok, highlighting the platform's role in the spread of disinformation. A mixed-methods approach was employed, combining a literature review with primary data collected from TikTok via web scraping and secondary data sourced from Turnbackhoaks.id and media reports. Content and message analysis, along with Naïve Bayes classification, were employed to investigate the types of hoaxes, their dissemination patterns, and audience responses. Data triangulation ensured validity and reliability. Findings revealed a concerning prevalence of political hoaxes, including black campaigns and attempts to manipulate public opinion, rapidly spread by TikTok's short-form video format. The Naïve Bayes method classified comments on #Pemilu2024 TikTok videos with an accuracy rate of 87.37%. After preprocessing, 414 comments were analyzed, comprising 127 negative, 237 positive, and 50 neutral comments. The Naïve Bayes method effectively predicts sentiment in TikTok comments related to #Pemilu2024. The analysis reveals that social media videos can easily influence the Indonesian people without verifying information on official websites.

Author Biography

Munadhil Abdul, Universitas Pembangunan Nasional “Veteran” Jakarta

Dosen ilmu komunikasi UPNV Jakarta

References

Aji, H. B., & Setiawan, E. B. (2023). Detecting hoaks content on social media using Bi-LSTM and RNN. Building of Informatics, Technology and Science (BITS), 5(1): 114–25.

Bondielli, A., & Marcelloni, F. (2019). A survey on fake news and rumour detection techniques. Information Sciences, 497, 38-55.

Castells, M. (2004). Informationalism, Networks, and the Network Society: A Theoretical Blueprint. In The Network Society: A Cross-Cultural Perspective. Edward Elgar Publishing Limited.

Ceron, W., de-Lima-Santos, M. F., & Quiles, M. G. (2021). Fake news agenda in the era of COVID-19: Identifying trends through fact-checking content. Online Social Networks and Media, 21: 100-116.

Chadha, N., Gangwar, R. C., & Bedi, R. (2015). Current challenges and application of speech recognition process using natural language processing: A survey. International Journal of Computer Applications. 131(11): 28-31.

Charisma, D. W. (2023). Eksistensi Humas Kemkominfo Dalam Mengelola Kasus Hoax Covid-19 Di Media Digital Periode Januari - Maret 2020. Binus University.

Darmawan, A. K., Al Wajieh, M. W., Setyawan, M. B., Yandi, T., & Hoiriyah, H. (2023). Hoax news analysis for the indonesian national capital relocation public policy with the support vector machine and random forest algorithms. Journal of Information Systems and Informatics, 5(1): 150-173.

Gupta, B., Negi, M., Vishwakarma, K., Rawat, G., Badhani, P., & Tech, B. (2017). Study of twitter sentiment analysis using machine learning algorithms on python article in international. Journal of Computer Applications, 165(9): 29-34.

Hsiao, C. H., Chang, J. J., & Tang, K. Y. (2016). Exploring the influential factors in continuance usage of mobile social Apps: Satisfaction, habit, and customer value perspectives. Telematics and Informatics, 33(2): 342-355.

Jang, S. M., Geng, T., Li, J. Y. Q., Xia, R., Huang, C. T., Kim, H., & Tang, J. (2018). A computational approach for examining the roots and spreading patterns of fake news: Evolution tree analysis. Computers in Human Behavior, 84: 103-113.

Kanozia, R., Arya, R., Singh, S., Ganghariya, G., & Narula, S. (2021). A study on fake news subject matter, presentation elements, tools of detection, and social media platforms in india. Asian Journal for Public Opinion Research, 9(1): 48–82. https://doi.org/10.15206/ajpor.2021.9.1.48

Kaye, D., Rodriguez, A., Langton, K., & Wikström, P. (2021). Research Perspectives on TikTok & Its Legacy Apps You Made This? I Made This: Practices of Authorship and (Mis)Attribution on TikTok. International Journal of Communication, 15(2021): 3195-3215. https://ijoc.org/index.php/ijoc/article/view/14544

Khan, T., Michalas, A., & Akhunzada, A. (2021). Fake news outbreak 2021: Can we stop the viral spread?. Journal of Network and Computer Applications, 190: 103-112.

Kim, Y., & Kim, S. (2023). Motives for following social influencers and electronic word-of-mouth: the role of social capital. International Journal of Communication, 17(2023): 7093-7114. https://ijoc.org/index.php/ijoc/article/view/19705

Kominfo.go.id (27 October 2023). Menkominfo: Isu Hoaks Pemilu Meningkat Hampir 10 Kali Lipat. https://www.kominfo.go.id /content/detail/52570/Siaran-pers-no-422hmkominfo102023-tentang-menkominfo-isu-hoaks-pemilu-meningkat-hampir-10-kali-lipat/0/siaran pers

León, B., Martínez-Costa, M. P., Salaverría, R., & López-Goñi, I. (2022). Health and science-related disinformation on COVID-19: A content analysis of hoaxes identified by fact-checkers in Spain. Plos One, 17(4): 1-18.

Lindgren, K. O., Oskarsson, S., & Persson, M. (2019). Enhancing electoral equality: can education compensate for family background differences in voting participation?. American Political Science Review, 113(1): 108-122. https://doi. org/10.1017/S0003055418000746

Malik, R. A. A., and Sibaroni, Y. (2022). Multi-aspect sentiment analysis of TikTok application usage using FasText feature expansion and CNN method. Journal of Computer System and Informatics (JoSYC), 3(4): 277-85.

Masciantonio, A., Bourguignon, D., Bouchat, P., Balty, M., & Rimé, B. (2021). Don’t put all social network sites in one basket: Facebook, Instagram, Twitter, TikTok, and their relations with well-being during the COVID-19 pandemic. Plos One, 16(3): 1-14.

Moreno-Castro, C., Vengut-Climent, E., Cano-Orón, L., & Mendoza-Poudereux, I. (2022). Exploratory study of the hoaxes spread via WhatsApp in Spain to prevent and/or cure COVID-19. Gaceta Sanitaria, 35: 534-540.

Motz, A., Ranta, E., Calderon, A. S., Adam, Q., Alzhouri, F., & Ebrahimi, D. (2022). Live sentiment analysis using multiple machine learning and text processing algorithms. Procedia Computer Science, 203(6): 165-172.

Mukarom, Z. (2021). Teori-Teori Komunikasi Berdasarkan Konteks. Bandung: PT Remaja Rosdakarya.

Muqsith, M.A., & Muzykant, V. L. (2019). Effect fake news for democracy. Jurnal Cita Hukum-Indonesian Law Journal, 7(3): 307-318.

Muzykant, V. L., Muqsith, M. A., Pratomo, R. R., & Barabash, V. (2021). Fake news on COVID-19 in Indonesia. In Pandemic Communication and Resilience (pp. 363-378). Cham: Springer International Publishing.

New York Times (4 November 2022). Worries Grow That TikTok Is New Home for Manipulated Video and Photos. https://www.nytimes.com/2022/11/04/technology/tiktok-deepfakes-disinformation.html

Nguyen, H., & Diederich, M. (2023). Facilitating knowledge construction in informal learning: A study of TikTok scientific, educational videos. Computers & Education, 205. https://doi.org/10.1016/j.compedu.2023.104896

Park, K., & Rim, H. (2019). Social media hoaxes, political ideology, and the role of issue confidence. Telematics and Informatics, 36: 1-11.

Pratiwi, U. (2018). Hoax in Indonesian Politics and Democracy Hoax in Modern Politics: The Meaning of Hoax in Indonesian Politics and Democracy. Jurnal Ilmu Social Ilmu Politik, 2(2).

Prima S. M., & Nisma L. N. (2020). Political Communication: Social Media Strengths and Threats of Social Media in the 2019 General Election. Universitas Diponegoro. https://doi.org/10.15294/ipsr.v5i2.21522

Rachmawati, F., Wibowo, A., & Arianto, I. (2022). Sentiment analysis #samasamabelajar public relations campaign based on big data on Tiktok. Proceeding of The International Conference on Economics and Business, 1(2): 377–88.

Raditia, V., & Achmad U, Z. (2023). Analisis sentimen pemilu indonesia tahun 2024 dari media sosial twitter. JURIKOM (Jurnal Riset Komputer), 10(2).

Ruffo, G., Semeraro, A., Giachanou, A., & Rosso, P. (2023). Studying fake news spreading, polarisation dynamics, and manipulation by bots: A tale of networks and language. Computer Science Review, 47. https://doi.org/10.1016/j.cosrev.2022.100531

Ruz, G. A., Henríquez, P. A., & Mascareño, A. (2020). Sentiment analysis of Twitter data during critical events through Bayesian networks classifiers. Future Generation Computer Systems, 106: 92-104.

Samodro, A., Miroj, R., NuoYi, X., & Purwanto, P. (2023). The impact of social media on E-Commerce towards MSMEs in Indonesia. IDEAS: Journal of Management & Technology, 3(2): 49-60.

Santoso, H., Rachmawanto, E., Nugraha, A., Nugroho, A., Setiadi, D., & Basuki, R. (2020). Hoax classification and sentiment analysis of Indonesian news using Naive Bayes optimization. TELKOMNIKA Telecommunication, Computing, Electronics and Control, 18(2): 799-806. doi: http://doi.org/10.12928/telkomnika.v18i2.14744

Savic, M. (2021). Research perspectives on TikTok & its legacy apps from Musical.ly to TikTok: Social construction of 2020’s most downloaded Short-Video App. International Journal of Communication, 15(22). https://ijoc.org/index.php/ijoc/article/view/14543

Sinapoy, M., Sibaroni, Y & Prasetyowati, S. (2023). Comparison of LSTM and IndoBERT Method in Identifying hoax on Twitter. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 7(3): 657 - 662. https://doi.org/10.29207/resti.v7i3.4830

Stieglitz, S., Mirbabaie, M., Ross, B., & Neuberger, C. (2018). Social media analytics–challenges in topic discovery, data collection, and data preparation. International journal of information management, 39: 156-168.

Talwar, S., Dhir, A., Kaur, P., Zafar, N., & Alrasheedy, M. (2019). Why do people share fake news? Associations between the dark side of social media use and fake news sharing behavior. Journal of Retailing and Consumer Services, 51: 72-82.

Tchakounté, F., Calvin, K. A., Ari, A. A. A., & Mbogne, D. J. F. (2022). A smart contract logic to reduce hoax propagation across social media. Journal of King Saud University-Computer and Information Sciences, 34(6): 3070-3078.

Wahyudi, D., & Sibaroni, Y. (2022). Deep Learning for Multi-Aspect Analisis pesan Content Analysis of TikTok App Using the RNN-LSTM Method. Building of Informatics, Technology and Science (BITS), 4(1): 169–77.

Wardle, C. (22 September 2020). Understanding Information disorder. https://firstdraftnews.org/long-form-article/understanding-information-disorder/

WeAreSocial. (2024). Digital 2024 Global Overview Report. https://wearesocial.com/id/blog/2024/01/digital-2024/

Wulandari, C. D., Muqsith, M. A., & Ayuningtyas, F. (2023). Fenomena Buzzer Di Media Sosial Jelang Pemilu 2024 Dalam Perspektif Komunikasi Politik. Jurnal Avant Garde, 11(1).

Yadav, V., Dhadwal, Y., Kanozia, R., Pandey, S. R., & Kumar, A. (2024). Unraveling the web of health misinformation: Exploring the characteristics, emotions, and motivations of misinformation during the COVID-19 pandemic. Asian Journal for Public Opinion Research, 12(1), 53–74. https://doi.org/10.15206/ajpor.2024.12.1.53

Zannettou, S., Sirivianos, M., Blackburn, J., & Kourtellis, N. (2019). The web of false information: Rumors, fake news, hoaxes, clickbait, and various other shenanigans. Journal of Data and Information Quality (JDIQ), 11(3): 1-37.

Zhang, C., Gupta, A., Kauten, C., Deokar, A. V., & Qin, X. (2019). Detecting fake news for reducing misinformation risks using analytics approaches. European Journal of Operational Research, 279(3): 1036-1052.

Downloads

Published

2025-05-31

Issue

Section

Articles