Analisis Korelasi Otomatisasi Proses Audit Terhadap Kualitas Audit

Authors

  • Sri Astuti UPN "Veteran" Yogyakarta
  • Sucahyo Heriningsih UPN "Veteran" Yogyakarta
  • Marita Marita UPN "Veteran" Yogyakarta

DOI:

https://doi.org/10.34209/equ.v25i1.4226

Keywords:

Prosedur Audit, Artificial Intelligence, Kualitas Audit

Abstract

Penelitian ini merupakan penelitian deskriptif kuantitatif, dan pengambilan data dilakukan dengan metode survey. Responden dalam penelitian ini adalah auditor yang bekerja pada Kantor Akuntan Publik (KAP). Tujuan penelitian ini adalah menguji hubungan antara variabel penugasan auditor terstruktur secara otomatis dengan kualitas audit, penugasan auditor semi terstruktur secara otomatis dengan kualitas audit, dan penugasan auditor tidak terstruktur secara otomatis dengan kualitas audit. Alat analisis yang digunakan dalam penelitian ini adalah analisis korelasi. Berdasarkan analisis data, otomatisasi proses audit untuk penugasan terstruktur dan semi terstruktur berkorelasi positif dan signifikan dengan kualitas audit, tetapi memiliki korelasi yang rendah. Adapun otomatisasi proses audit untuk penugasan tidak terstruktur tidak berkorelasi dengan kualitas audit. Penggunaan alat otomatisasi kognitif dalam tugas semi terstruktur dan tidak terstruktur terkadang dilakukan. Hal ini terkait dengan penggunaan Artificial Intelligence yang masih rendah di sebagian besar KAP. Identifikasi struktur penugasan audit berguna dalam riset keperilakuan karena struktur penugasan dapat mempunyai dampak dalam keputusan (judgement) auditor.

Author Biographies

Sri Astuti, UPN "Veteran" Yogyakarta

Dosen Prodi Akuntansi FEB UPN "Veteran" Yogyakarta

Sucahyo Heriningsih, UPN "Veteran" Yogyakarta

Dosen Prodi Akuntansi FEB UPN "Veteran" Yogyakarta

Marita Marita, UPN "Veteran" Yogyakarta

Marita

Dosen Prodi Akuntansi FEB UPN "Veteran" Yogyakarta

References

Abdolmohammadi, M. J, 1999, A comprehensive taxonomy of audit task structure, professional rank and decision aids for behavioral research.Behavioral Research in Accounting11:51–92.

Adrian, 2020, pemanfaatan robot process automation dalam audit keuangan , JISAMAR (Journal of Information System, Applied, Management, Accounting and Researh, Vol. 4 No. 3 , Agustus 2020

Afifah Muawanah dkk, 2022, Perilaku Auditor Menyikapi Munculnya Artificial Intelligence dalam Proses Audit, Jurnal Publikasi Ekonomi dan Akuntansi Vol 2. No. 1 Januari 2022 52 – 60

Agnew, H, 2016, Auditing: Pitch battle, Financial Times(May 9).

Anwar Ahmad Nugraha Syaiful, 2014, Pengaruh Fee Audit dan Tekanan Anggaran Waktu Audit Terhadap Kualitas Audit, Fakultas Ekonomi, Universitas Komputer Indonesia

Brown-Liburd, H., Hussein Issa, H., Lombardi, D, 2015, Behavioral implications of big data's impact on audit judgment and decision making and future research directions, Account Horizons, 29 (2), 451–468.

Constantiou, I. D. and Kallinikos, J., 2015, New games, new rules: big data and the changing context of strategy, Journal of Information Technology, 30(1), pp.44–57.

Cao et al, 2015, Big Data Analytics in Financial Statement Audits Accounting Horizons 29 (2): 423–429.

Dai, J., Vasarhelyi, M., 2016, Imagineering Audit 4.0, J. Emerg. Technol. Account, 13 (1), 1–15.

DeAngelo, L., 1981, Auditor independence, low‐balling and disclosure regulation, J. Account. Econ. 3 (2), 113–127.

DeFond, M., Zhang, J., 2014, A review of archival auditing research, J. Account. Econ, 58 (2/3), 275–326.

Deloitte, 2013, Adding Insight to Audit Transforming Internal Audit through Data Analytics, Detroit, MI: Deloitte Touche Tohmatsu Limited.

De Mauro et al, 2015, What is big data? A consensual definition and a review of key research topics, AIP conference proceedings, 1644, pp. 97–104.

Earley Christine, 2015, Data Analytics in Auditing: Opportunities and challenges, Business Horizons: 58 (5)

Hermann et al, 2015, Design Principles for Industrie 4.0 Scenarios, Presented at the 49th Hawaiian International Conference on Systems Science.

IAPI, 2018, Panduan Indikator Kualitas Audit Pada Kantor Akuntan Publik, IAPI Online PPL Material Via Zoom Webinar-KAP audit quality indicator, Resource Person: Thursday, 12 November

KPMG. 2012. Leveraging Data Analytics and Continuous Auditing within Internal Audit. Available at: https://www.kpmg.com/US/en/IssuesAndInsights/ArticlesPublications/Documents/leveraging-dataanalytics-auditing-effectiveness.pdf

Lacity, M, Willcocks, 2017, Robotic Process Automation and Risk Mitigation: The Definitive Guide, Stratford-upon-Avon: SB Publishing

Larasati, T., Wijayanti, A., & Maulana, A. (2020). Keahlian Keuangan Komite Audit dalam Memoderasi Pengaruh Fraud Triangle Terhadap Kecurangan Laporan Keuangan. Jurnal Syntax Transformation, 1(8), 541-553.

Lee, C.J., C. Liu, and T. Wang,1999, The 150-hour Rule, Journal of Accounting and Economics. 27 (2). pp. 203-228.

Manita et al, 2020, The Digital Transformation of External Audit and Its Impact on Corporate, Technological Forecasting & Social Change, 150, 1-10.

Montes, G.A., Goertzel, B, 2018, Distributed, decentralized, and democratized artificial intelligence, Technol. Forecast. Soc.141:354-358.

Porter, M.E., Heppelmann, J.E, 2014, How smart, connected products are transforming competition, Harv. Bus. Rev. 92, 11–64.

Rapoport, M, 2016, Auditors count on tech for backup, Wall Street Journal (March 8).

PricewaterhouseCoopers (PwC), 2014, State of the Internal Audit Profession Study. Available at: http://www.pwc.com/en_M1/m1/publications/ documents/ pwc-state-of-the-internal-audit-profession2014.pdf

Protiviti, 2014, Internal Audit Capabilities and Needs Survey. Available at: http://www.protiviti.com/ en-US/Pages/IA-Capabilities-and-Needs-Survey.aspx

Richins Greg et all, 2017, Big Data Analytics: Opportunity or Threat for the Accounting Profession?, Journal of Information Systems (2017) 31 (3): 63–79.

Wamba et al, 2017, Big data analytics and firm performance: Effects of dynamic capabilities, Journal of Business Research, 70, pp.356–365.

Watkins et al, 2004, Audit Quality: A Synthesis of Theory and Empirical Evidence, Journal of Accounting Literature. 23. pp. 153–193.

Willcocks, M. Lacity, dan A. Craig, 2015, The IT Function and Robotic Process Automation, Outsourcing Unit Work. Res. Pap. Ser., no. October 2015, pp. 372–380, 2015. [5]

Wooten, T.G,2003, It is Impossible to Know The Number of Poor-Quality Audits that simply go undetected and unpublicized, The CPA Journal. January. p. 48-51.

Zhang, Chanyuan (Abigail), 2019, Intelligent Process Automation in Audit, Forthcoming, Journal of Emerging Technologies in Accounting, DOI: 10.2308/jeta-52653, Available at SSRN: https://ssrn.com/abstract=3448091 or http://dx.doi.org/10.2139/ssrn.3448091

Published

2022-07-21

Issue

Section

Articles