Artificial Intelligence and Sustainability Reporting: Performance Outcomes in ESG Investing
DOI:
https://doi.org/10.34209/equ.v28i2.13063Abstract
The convergence of artificial intelligence and sustainable finance represents a fundamental transformation in investment decision-making, yet empirical evidence concerning effectiveness remains fragmented across diverse research domains. This study synthesises evidence from 43 peer-reviewed investigations spanning 2020 to 2024, examining artificial intelligence applications in environmental, social, and governance investing through systematic meta-analysis following PRISMA 2020 guidelines. Random-effects models demonstrate that artificial intelligence technologies significantly enhance risk-adjusted financial returns (standardised mean difference = 0.58; 95% confidence interval: 0.44-0.72; p<0.001), translating to approximately 5.2 per cent annual performance improvement, and environmental, social, and governance prediction accuracy (standardised mean difference = 0.53; 95% confidence interval: 0.38-0.68; p<0.001), representing 15 per cent error reduction compared with traditional methodologies. Ensemble machine learning demonstrates robust performance (standardised mean difference = 0.64; I²=45 per cent), whilst deep learning exhibits highest effects with substantial variability (standardised mean difference = 0.71; I²=68 per cent). Implementation success depends critically on data quality infrastructure (identified in 88 per cent of studies) and phased deployment strategies (effective in 64 per cent of cases). Moderate evidence certainty supports that artificial intelligence represents genuine capability advancement, though unexplained heterogeneity (I²=58-62 per cent) limits precise outcome prediction in specific contexts. Findings provide evidence-based guidance for investment managers adopting artificial intelligence technologies, policymakers developing regulatory frameworks, and researchers identifying future research priorities.
Keywords: artificial intelligence; sustainable finance; ESG investing; meta-analysis; machine learning; investment decision-making; financial technology
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Syarat yang harus dipenuhi oleh Penulis sebagai berikut:Penulis menyimpan hak cipta dan memberikan jurnal hak penerbitan pertama naskah secara simultan dengan lisensi di bawah Creative Commons Attribution License yang mengizinkan orang lain untuk berbagi pekerjaan dengan sebuah pernyataan kepenulisan pekerjaan dan penerbitan awal di jurnal ini.
Penulis bisa memasukkan ke dalam penyusunan kontraktual tambahan terpisah untuk distribusi non ekslusif versi kaya terbitan jurnal (contoh: mempostingnya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan penerbitan awalnya di jurnal ini.
Penulis diizinkan dan didorong untuk memposting karya mereka online (contoh: di repositori institusional atau di website mereka) sebelum dan selama proses penyerahan, karena dapat mengarahkan ke pertukaran produktif, seperti halnya sitiran yang lebih awal dan lebih hebat dari karya yang diterbitkan. (Lihat Efek Akses Terbuka).





