Studi Dampak Perairan Dangkal terhadap Gaya Lateral (Sway Force) dan Momen Berputar (Yaw Moment) Kapal
DOI:
https://doi.org/10.54378/astne.v3i2.11786Keywords:
perairan terbatas, efek tepi , gaya samping , momen belok , CFDAbstract
This study investigates the influence of restricted waters on the sway force (Y’H) and yaw moment (N’H) acting on a ship. We performed simulations using Computational Fluid Dynamics (CFD) on a 1:40 scale KRISO Container Ship (KCS) model, varying ship speed, water depth (1.3T and 1.6T), and drift angle (2°–10°). The simulation results indicate that both Y’H and N’H increase significantly as the water becomes shallower and the drift angle becomes larger. This phenomenon is attributed to the pressure imbalance around the ship's hull, caused by flow confinement. These findings are anticipated to provide valuable insights for safer and more efficient ship maneuvering, especially in narrow and shallow waterways.
Keywords: restricted waters; bank effect; sway force; yaw moment; CFD
References
Ayub, M., & Furukawa, S. (2024). Recent Advances in Ship Hydrodynamics and Maneuvering. (Catatan: Pastikan ini adalah sumber yang sudah terbit).
Bertram, V. (2002). Practical Ship Hydrodynamics. Butterworth-Heinemann.
Coldwell, J. (1983). Ship Handling: Theory and Practice. Stanford Maritime.
Delefortrie, G., Lataire, E., & Vantorre, M. (2024). Advances in ship-bank interaction research. Ocean Engineering, 297, 116817. https://doi.org/10.1016/j.oceaneng.2024.116817 (Catatan: Pastikan ini adalah sumber yang sudah terbit dan DOI sesuai jika ada).
Faltinsen, O. M. (2005). Hydrodynamics of High-Speed Marine Vehicles. Cambridge University Press.
Ferziger, J. H., & Peric, M. M. (2002). Computational Methods for Fluid Dynamics. Springer.
Larsson, L., Raven, H. C., & Hoekstra, M. (2010). Ship Resistance and Propulsion: Practical Hydromechanics. Cambridge University Press.
Lee, C. K., & Lee, S. (2008). Numerical prediction of the maneuvering forces of a ship in shallow water. Ocean Engineering, 35(5-6), 553–562. https://doi.org/10.1016/j.oceaneng.2007.12.001
Lee, S., & Hong, S. (2017). Maneuvering performance of large vessels in shallow water using RANS simulation. Ocean Engineering, 142, 589–601. https://doi.org/10.1016/j.oceaneng.2017.07.036
Lewis, E. V. (Ed.). (1989). Principles of Naval Architecture (Vol. II): Resistance, Propulsion, and Vibration. Society of Naval Architects and Marine Engineers.
Liu, K., Su, B., Yu, D., & Zou, L. (2021). Numerical investigation on the bank effect of a ship in restricted waters. Ocean Engineering, 225, 108745. https://doi.org/10.1016/j.oceaneng.2021.108745
Longo, J., & Stern, F. (2002). Uncertainty assessment for EFD, CFD, and predictions of ship maneuvering in shallow and deep water. Journal of Ship Research, 46(4), 282–301.
Maimun, A., & Muhammad, A. (2006). Ship Manoeuvring in Restricted Waters. Universiti Teknologi Malaysia.
Rawson, K. J., & Tupper, E. C. (2001). Basic Ship Theory (Vol. 2): Ship Resistance and Propulsion, Seakeeping, Ship Dynamics and Response. Butterworth-Heinemann.
Shih, T. H., Liou, W. W., Shabbir, A., Yang, Z., & Zhu, J. (1995). A new k-ε eddy viscosity model for high Reynolds number turbulent flows. Computers & Fluids, 24(3), 227–238. https://doi.org/10.1016/0045-7930(94)00032-T