Studi Dampak Perairan Dangkal terhadap Gaya Lateral (Sway Force) dan Momen Berputar (Yaw Moment) Kapal

Authors

  • Rico UPN Veteran Jakarta
  • Fakhri Akbar Ayub UPN Veteran Jakarta

DOI:

https://doi.org/10.54378/astne.v3i2.11786

Keywords:

perairan terbatas, efek tepi , gaya samping , momen belok , CFD

Abstract

This study investigates the influence of restricted waters on the sway force (Y’H) and yaw moment (N’H) acting on a ship. We performed simulations using Computational Fluid Dynamics (CFD) on a 1:40 scale KRISO Container Ship (KCS) model, varying ship speed, water depth (1.3T and 1.6T), and drift angle (2°–10°). The simulation results indicate that both Y’H and N’H increase significantly as the water becomes shallower and the drift angle becomes larger. This phenomenon is attributed to the pressure imbalance around the ship's hull, caused by flow confinement. These findings are anticipated to provide valuable insights for safer and more efficient ship maneuvering, especially in narrow and shallow waterways.

Keywords: restricted waters; bank effect; sway force; yaw moment; CFD

References

Ayub, M., & Furukawa, S. (2024). Recent Advances in Ship Hydrodynamics and Maneuvering. (Catatan: Pastikan ini adalah sumber yang sudah terbit).

Bertram, V. (2002). Practical Ship Hydrodynamics. Butterworth-Heinemann.

Coldwell, J. (1983). Ship Handling: Theory and Practice. Stanford Maritime.

Delefortrie, G., Lataire, E., & Vantorre, M. (2024). Advances in ship-bank interaction research. Ocean Engineering, 297, 116817. https://doi.org/10.1016/j.oceaneng.2024.116817 (Catatan: Pastikan ini adalah sumber yang sudah terbit dan DOI sesuai jika ada).

Faltinsen, O. M. (2005). Hydrodynamics of High-Speed Marine Vehicles. Cambridge University Press.

Ferziger, J. H., & Peric, M. M. (2002). Computational Methods for Fluid Dynamics. Springer.

Larsson, L., Raven, H. C., & Hoekstra, M. (2010). Ship Resistance and Propulsion: Practical Hydromechanics. Cambridge University Press.

Lee, C. K., & Lee, S. (2008). Numerical prediction of the maneuvering forces of a ship in shallow water. Ocean Engineering, 35(5-6), 553–562. https://doi.org/10.1016/j.oceaneng.2007.12.001

Lee, S., & Hong, S. (2017). Maneuvering performance of large vessels in shallow water using RANS simulation. Ocean Engineering, 142, 589–601. https://doi.org/10.1016/j.oceaneng.2017.07.036

Lewis, E. V. (Ed.). (1989). Principles of Naval Architecture (Vol. II): Resistance, Propulsion, and Vibration. Society of Naval Architects and Marine Engineers.

Liu, K., Su, B., Yu, D., & Zou, L. (2021). Numerical investigation on the bank effect of a ship in restricted waters. Ocean Engineering, 225, 108745. https://doi.org/10.1016/j.oceaneng.2021.108745

Longo, J., & Stern, F. (2002). Uncertainty assessment for EFD, CFD, and predictions of ship maneuvering in shallow and deep water. Journal of Ship Research, 46(4), 282–301.

Maimun, A., & Muhammad, A. (2006). Ship Manoeuvring in Restricted Waters. Universiti Teknologi Malaysia.

Rawson, K. J., & Tupper, E. C. (2001). Basic Ship Theory (Vol. 2): Ship Resistance and Propulsion, Seakeeping, Ship Dynamics and Response. Butterworth-Heinemann.

Shih, T. H., Liou, W. W., Shabbir, A., Yang, Z., & Zhu, J. (1995). A new k-ε eddy viscosity model for high Reynolds number turbulent flows. Computers & Fluids, 24(3), 227–238. https://doi.org/10.1016/0045-7930(94)00032-T

Downloads

Published

2025-08-18

How to Cite

Rico, & Ayub, F. A. (2025). Studi Dampak Perairan Dangkal terhadap Gaya Lateral (Sway Force) dan Momen Berputar (Yaw Moment) Kapal . Applied Science Technology in Naval Engineering (ASTNE), 3(2), 23–28. https://doi.org/10.54378/astne.v3i2.11786