Identifikasi Citra Warna Pada Kain Tenun Lotis Timor Tengah Selatan(TTS) Menggunakan Metode Convolution Network(CNN)

Penerapan Convolutional Neural Networks (CNN) untuk Identifikasi Warna dalam Kain Tenun Lotis Timor Tengah Selatan: Analisis Digital pada Warisan Budaya

Authors

  • elike adielwin nenometa STIKOM Uyelindo Kupang, Nusa Tenggara Timur
  • maria rosalinda naikteas Stikom Uyelindo Kupang
  • Yampi R Kaesmetan Teknik Informatika Strata 1 STIKOM Uyelindo Kupang

DOI:

https://doi.org/10.52958/jsia.v2i1.7692

Abstract

Handwoven fabric is a rich cultural heritage reflecting the artistic and historical values, showcasing the cultural richness of a region. Among the diverse traditional fabrics in Indonesia, Lotis woven fabric from South Central Timor (TTS) possesses unique patterns, motifs, and colors. The identification of color images on Lotis woven fabric TTS is essential for preserving its authenticity and beauty. In the era of technological advancement, the utilization of artificial intelligence methods, particularly Convolutional Neural Networks (CNN), has garnered attention in various image processing applications. CNN has proven highly effective in classifying and recognizing patterns in images, including color identification. This study aims to implement the Convolutional Neural Networks (CNN) method in the process of identifying color images on Lotis woven fabric from South Central Timor (TTS). Through this approach, it is hoped that a system capable of recognizing and distinguishing various color combinations present in Lotis woven fabric TTS with high accuracy can be developed. This research is expected to contribute to the field of pattern recognition and image processing, as well as facilitate the preservation and development of traditional woven fabric culture, particularly Lotis woven fabric TTS.

References

Albawi, S., Mohammed, T. A., & Al-Zawi, S. (2017). Understanding of a convolutional neural network. Proceedings of 2017 International Conference on Engineering and Technology, ICET

, 2018-January, 1–6. https://doi.org/10.1109/ICEngTechnol.2017.8308186

Antonio Meko, D., Meo, M. O., Studi Teknik Informatika, P., Kupang, S., & Uyelindo Kupang, S. (2017). Pengenalan Motif Kain Tenun Kabupaten Timor Tengah Selatan (TTS) dengan Menggunakan Game Puzzle. Jurnal Teknologi Terpadu, 3(2).

Bariyah, T., & Arif Rasyidi, M. (t.t.). Convolutional Neural Network Untuk Metode Klasifikasi Multi-Label Pada Motif Batik Convolutional Neural Network for Multi-Label Batik Pattern Classification Method. Dalam Februari (Vol. 20, Nomor 1).

Kumala, R., Darmi, Y., David Maria Veronika, N., & Muhammadiyah Bengkulu Bengkulu, U. (2023). Klasifikasi Pola Motif Kain Tenun Bumpak Desa Kampai Seluma Menggunakan Metode CNNN. Remik: Riset dan E-Jurnal Manajemen Informatika Komputer, 7(4). https://doi.org/10.33395/remik.v7i4.13008

Liunokas, M. E. (2020). Perempuan dan Liminalitas dalam Tradisi Perkawinan Adat di Timor

Tengah Selatan. Anthropos: Jurnal Antropologi Sosial dan Budaya (Journal of Social and

Cultural Anthropology), 6(1), 114. https://doi.org/10.24114/antro.v6i1.17047

Mawan, R. (t.t.). Klasifikasi motif batik menggunakan convolutional neural network. https://doi.org/10.36802/jnanaloka

Omori, Y., & Shima, Y. (t.t.). Image Augmentation for Eye Contact Detection Based on Combination of Pre-trained Alex-Net CNN and SVM. https://doi.org/10.17706/jcp.15.3

Peryanto, A., Yudhana, A., & Umar, D. R. (2019). Rancang Bangun Klasifikasi Citra Dengan

Teknologi Deep Learning Berbasis Metode Convolutional Neural Network. Dalam Jurnal

(Vol. 8). https://www.mathworks.com/discovery/convolutional-neural-network.html

Rizki, Y., Medikawati Taufiq, R., Mukhtar, H., & Putri, D. (2021). Klasifikasi Pola Kain Tenun Melayu Menggunakan Faster R-CNN. IT Journal Research and Development, 5(2), 215–225. https://doi.org/10.25299/itjrd.2021.vol5(2).5831

Wahyu Qur’ana, T. (2023). Implementasi Metode Convolutional Neural Network (CNN) untuk Klasifikasi Motif pada Citra Sasirangan. Jurnal Ilmiah Multidisipline, 1(7), 2986–6340. https://doi.org/10.5281/zenodo.8305503

Yopento, J., & Coastera, F. (2022). IDENTIFIKASI PNEUMONIA PADA CITRA X-RAY PARU- PARU MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN) BERDASARKAN EKSTRAKSI FITUR SOBEL. Dalam Jurnal Rekursif (Vol. 10, Nomor 1). http://ejournal.unib.ac.id/index.php/rekursif/40

Published

2024-03-31