Molecular Detection of VEB and OXA-23 Resistance Gene in Pseudomonas Aeruginosa Isolates at Dr. Wahidin Sudirohusodo Hospital Makassar

Authors

  • Andi Zsazsa Rafiatul Mukhlis Master of Biomedical Science, Graduate School Hasanuddin University
  • Rizalinda Sjahril Department of Microbiology, Faculty of Medicine, Hasanuddin University.
  • Firdaus Hamid Department of Microbiology, Faculty of Medicine, Hasanuddin University.

DOI:

https://doi.org/10.33533/jpm.v16i1.4144

Keywords:

Pseudomonas aeruginosa, OXA-23, VEB.

Abstract

Pseudomonas aeruginosa is a common gram-negative pathogen in nosocomial infections in immune-compromised patients. It exhibits high rates of intrinsic resistance to many classes of antibiotics, especially beta-lactam antibiotics. Production of extended-spectrum beta-lactamase (ESBL) and genes belonging to the carbapenem-hydrolyzing class D subgroup β-lactamases (CHDL) are a problem for increasing antibiotic resistance worldwide. This study aimed to identify P. aeruginosa containing the VEB and OXA-23 genes. Eighty-five clinical isolates of P. aeruginosa from various clinical samples were identified and tested for antimicrobial susceptibility using VITEK 2 compact. VEB and OXA-23 genes were detected using the Polymerase Chain Reaction (PCR) method. The PCR results revealed that 13 (15.3%) of P. aeruginosa isolates were positive OXA-23 gene, but no isolate positive for the VEB gene in P. aeruginosa isolates. The study results demonstrated the spread of the OXA-23 gene in P. aeruginosa isolates at Dr. Wahidin Sudirohusodo Hospital Makassar.

References

Laudy AE, Ró P, Smolińska-Kró K, Miel MC´, Słoczyńska A, Patzer J et al. Prevalence of ESBL-producing Pseudomonas aeruginosa isolates in Warsaw, Poland, detected by various phenotypic and genotypic methods. 2017. doi:10.1371/journal.pone.0180121.

Hosu MC, Vasaikar SD, Okuthe GE, Apalata T. Detection of extended spectrum beta-lactamase genes in Pseudomonas aeruginosa isolated from patients in rural Eastern Cape Province, South Africa. Sci Reports 2021 111 2021; 11: 1–8.

Lin SP, Liu MF, Lin CF, Shi ZY. Phenotypic detection and polymerase chain reaction screening of extended-spectrum β-lactamases produced by Pseudomonas aeruginosa isolates. J Microbiol Immunol Infect 2012; 45: 200–207.

Kothari A, Kumar S, Omar BJ, Kiran K. Detection of extended‑spectrum beta‑lactamase (ESBL) production by disc diffusion method among Pseudomonas species from various clinical samples. J Fam Med Prim Care 2020; 9: 683–693.

Zhao WH, Hu ZQ. β-Lactamases identified in clinical isolates of Pseudomonas aeruginosa. http://dx.doi.org/103109/1040841X2010481763 2010; 36: 245–258.

Maurya AP, Talukdar A Das, Chanda DD, Chakravarty A, Bhattacharjee A. Integron-borne transmission of VEB-1 extended-spectrum β-Lactamase in pseudomonas aeruginosa in a tertiary care hospital in India. Antimicrob Agents Chemother 2014; 58: 6966–6969.

Alikhani MY, Karimi Tabar Z, Mihani F, Kalantar E, Karami P, Sadeghi M et al. Antimicrobial Resistance Patterns and Prevalence of blaPER-1 and blaVEB-1 Genes Among ESBL-producing Pseudomonas aeruginosa Isolates in West of Iran. Jundishapur J Microbiol 2014; 7: 8888.

Antunes NT, Lamoureaux TL, Toth M, Stewart NK, Frase H, Vakulenko SB. Class D-Lactamases: Are They All Carbapenemases? 2014. doi:10.1128/AAC.02522-13.

Leonard DA, Bonomo RA, Powers RA. Class D β-Lactmases: a Re-appraisal After Five Decades NIH Public Access. Acc Chem Res 2013; 46: 2407–2415.

Poirel L, Naas T, Nordmann P. Diversity, epidemiology, and genetics of class D β-lactamases. Antimicrob Agents Chemother 2010; 54: 24–38.

Rouhi S, Ramazanzadeh R. Prevalence of blaOxacillinase-23and blaOxacillinase-24/40-type Carbapenemases in Pseudomonas aeruginosa Species Isolated From Patients With Nosocomial and Non-nosocomial Infections in the West of Iran. Iran J Pathol 2018; 13: 348.

Woodford N, Ellington MJ, Coelho JM, Turton JF, Ward ME, Brown S et al. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Agents 2006; 27: 351–353.

Bokaeian M, Zahedani SS, Bajgiran MS, Moghaddam AA. Frequency of PER, VEB, SHV, TEM and CTX-M Genes in Resistant Strains of Pseudomonas aeruginosa Producing Extended Spectrum β-Lactamases. Jundishapur J Microbiol 2015; 8: 13783.

Hosu MC, Vasaikar SD, Okuthe GE, Apalata T. Detection of extended spectrum beta-lactamase genes in Pseudomonas aeruginosa isolated from patients in rural Eastern Cape Province, South Africa. Sci Reports 2021 111 2021; 11: 1–8.

Dou Y, Huan J, Guo F, Zhou Z, Shi Y. Pseudomonas aeruginosa prevalence, antibiotic resistance and antimicrobial use in Chinese burn wards from 2007 to 2014. J Int Med Res 2017; 45: 1124.

Juayang AC, Lim JPT, Bonifacio AF V., Lambot AVL, Millan SM, Sevilla VZJN et al. Five-Year Antimicrobial Susceptibility of Pseudomonas aeruginosa from a Local Tertiary Hospital in Bacolod City, Philippines. Trop Med Infect Dis 2017, Vol 2, Page 28 2017; 2: 28.

El Zowalaty ME, Al Thani AA, Webster TJ, El Zowalaty AE, Schweizer HP, Nasrallah GK et al. Pseudomonas aeruginosa: arsenal of resistance mechanisms, decades of changing resistance profiles, and future antimicrobial therapies. http://dx.doi.org/102217/fmb1548 2015; 10: 1683–1706.

Yoon EJ, Jeong SH. Mobile Carbapenemase Genes in Pseudomonas aeruginosa. Front Microbiol 2021; 12: 30.

Girlich D, Poirel L, Leelaporn A, Karim A, Tribuddharat C, Fennewald M et al. Molecular epidemiology of the integron-located VEB-1 extended-spectrum β-lactamase in nosocomial enterobacterial isolates in Bangkok, Thailand. J Clin Microbiol 2001; 39: 175–182.

Tawfik AF, Shibl AM, Aljohi MA, Altammami MA, Al-Agamy MH. Distribution of Ambler class A, B and D β-lactamases among Pseudomonas aeruginosa isolates. Burns 2012; 38: 855–860.

Lee S, Park YJ, Kim M, Lee HK, Han K, Kang CS et al. Prevalence of Ambler class A and D β-lactamases among clinical isolates of Pseudomonas aeruginosa in Korea. J Antimicrob Chemother 2005; 56: 122–127.

Naas T, Poirel L, Nordmann P. Minor extended-spectrum β-lactamases. Clin Microbiol Infect 2008; 14: 42–52.

Akinci E, Vahaboglu H. Minor extended-spectrum β-lactamases. http://dx.doi.org/101586/eri10119 2014; 8: 1251–1258.

Payasi A, Chaudhary M. Prevalence, Genotyping of Escherichia coli and Pseudomonas aeruginosa Clinical Isolates for Oxacillinase Resistance and Mapping Susceptibility Behaviour. J Microb Biochem Technol 2014; 6: 1948–5948.

Esenkaya Taşbent F, Özdemir M. [The presence of OXA type carbapenemases in Pseudomonas strains: first report from Turkey]. Mikrobiyol Bul 2015; 49: 26–34.

Walther-Rasmussen J, Høiby N. OXA-type carbapenemases. J Antimicrob Chemother 2006; 57: 373–383.

Downloads

Published

2022-05-18

How to Cite

Mukhlis, A. Z. R., Sjahril, R., & Hamid, F. (2022). Molecular Detection of VEB and OXA-23 Resistance Gene in Pseudomonas Aeruginosa Isolates at Dr. Wahidin Sudirohusodo Hospital Makassar. Jurnal Profesi Medika : Jurnal Kedokteran Dan Kesehatan, 16(1). https://doi.org/10.33533/jpm.v16i1.4144