Molecular Detection of VEB and OXA-23 Resistance Gene in Pseudomonas Aeruginosa Isolates at Dr. Wahidin Sudirohusodo Hospital Makassar
DOI:
https://doi.org/10.33533/jpm.v16i1.4144Keywords:
Pseudomonas aeruginosa, OXA-23, VEB.Abstract
Pseudomonas aeruginosa is a common gram-negative pathogen in nosocomial infections in immune-compromised patients. It exhibits high rates of intrinsic resistance to many classes of antibiotics, especially beta-lactam antibiotics. Production of extended-spectrum beta-lactamase (ESBL) and genes belonging to the carbapenem-hydrolyzing class D subgroup β-lactamases (CHDL) are a problem for increasing antibiotic resistance worldwide. This study aimed to identify P. aeruginosa containing the VEB and OXA-23 genes. Eighty-five clinical isolates of P. aeruginosa from various clinical samples were identified and tested for antimicrobial susceptibility using VITEK 2 compact. VEB and OXA-23 genes were detected using the Polymerase Chain Reaction (PCR) method. The PCR results revealed that 13 (15.3%) of P. aeruginosa isolates were positive OXA-23 gene, but no isolate positive for the VEB gene in P. aeruginosa isolates. The study results demonstrated the spread of the OXA-23 gene in P. aeruginosa isolates at Dr. Wahidin Sudirohusodo Hospital Makassar.
References
Laudy AE, Ró P, Smolińska-Kró K, Miel MC´, Słoczyńska A, Patzer J et al. Prevalence of ESBL-producing Pseudomonas aeruginosa isolates in Warsaw, Poland, detected by various phenotypic and genotypic methods. 2017. doi:10.1371/journal.pone.0180121.
Hosu MC, Vasaikar SD, Okuthe GE, Apalata T. Detection of extended spectrum beta-lactamase genes in Pseudomonas aeruginosa isolated from patients in rural Eastern Cape Province, South Africa. Sci Reports 2021 111 2021; 11: 1–8.
Lin SP, Liu MF, Lin CF, Shi ZY. Phenotypic detection and polymerase chain reaction screening of extended-spectrum β-lactamases produced by Pseudomonas aeruginosa isolates. J Microbiol Immunol Infect 2012; 45: 200–207.
Kothari A, Kumar S, Omar BJ, Kiran K. Detection of extended‑spectrum beta‑lactamase (ESBL) production by disc diffusion method among Pseudomonas species from various clinical samples. J Fam Med Prim Care 2020; 9: 683–693.
Zhao WH, Hu ZQ. β-Lactamases identified in clinical isolates of Pseudomonas aeruginosa. http://dx.doi.org/103109/1040841X2010481763 2010; 36: 245–258.
Maurya AP, Talukdar A Das, Chanda DD, Chakravarty A, Bhattacharjee A. Integron-borne transmission of VEB-1 extended-spectrum β-Lactamase in pseudomonas aeruginosa in a tertiary care hospital in India. Antimicrob Agents Chemother 2014; 58: 6966–6969.
Alikhani MY, Karimi Tabar Z, Mihani F, Kalantar E, Karami P, Sadeghi M et al. Antimicrobial Resistance Patterns and Prevalence of blaPER-1 and blaVEB-1 Genes Among ESBL-producing Pseudomonas aeruginosa Isolates in West of Iran. Jundishapur J Microbiol 2014; 7: 8888.
Antunes NT, Lamoureaux TL, Toth M, Stewart NK, Frase H, Vakulenko SB. Class D-Lactamases: Are They All Carbapenemases? 2014. doi:10.1128/AAC.02522-13.
Leonard DA, Bonomo RA, Powers RA. Class D β-Lactmases: a Re-appraisal After Five Decades NIH Public Access. Acc Chem Res 2013; 46: 2407–2415.
Poirel L, Naas T, Nordmann P. Diversity, epidemiology, and genetics of class D β-lactamases. Antimicrob Agents Chemother 2010; 54: 24–38.
Rouhi S, Ramazanzadeh R. Prevalence of blaOxacillinase-23and blaOxacillinase-24/40-type Carbapenemases in Pseudomonas aeruginosa Species Isolated From Patients With Nosocomial and Non-nosocomial Infections in the West of Iran. Iran J Pathol 2018; 13: 348.
Woodford N, Ellington MJ, Coelho JM, Turton JF, Ward ME, Brown S et al. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Agents 2006; 27: 351–353.
Bokaeian M, Zahedani SS, Bajgiran MS, Moghaddam AA. Frequency of PER, VEB, SHV, TEM and CTX-M Genes in Resistant Strains of Pseudomonas aeruginosa Producing Extended Spectrum β-Lactamases. Jundishapur J Microbiol 2015; 8: 13783.
Hosu MC, Vasaikar SD, Okuthe GE, Apalata T. Detection of extended spectrum beta-lactamase genes in Pseudomonas aeruginosa isolated from patients in rural Eastern Cape Province, South Africa. Sci Reports 2021 111 2021; 11: 1–8.
Dou Y, Huan J, Guo F, Zhou Z, Shi Y. Pseudomonas aeruginosa prevalence, antibiotic resistance and antimicrobial use in Chinese burn wards from 2007 to 2014. J Int Med Res 2017; 45: 1124.
Juayang AC, Lim JPT, Bonifacio AF V., Lambot AVL, Millan SM, Sevilla VZJN et al. Five-Year Antimicrobial Susceptibility of Pseudomonas aeruginosa from a Local Tertiary Hospital in Bacolod City, Philippines. Trop Med Infect Dis 2017, Vol 2, Page 28 2017; 2: 28.
El Zowalaty ME, Al Thani AA, Webster TJ, El Zowalaty AE, Schweizer HP, Nasrallah GK et al. Pseudomonas aeruginosa: arsenal of resistance mechanisms, decades of changing resistance profiles, and future antimicrobial therapies. http://dx.doi.org/102217/fmb1548 2015; 10: 1683–1706.
Yoon EJ, Jeong SH. Mobile Carbapenemase Genes in Pseudomonas aeruginosa. Front Microbiol 2021; 12: 30.
Girlich D, Poirel L, Leelaporn A, Karim A, Tribuddharat C, Fennewald M et al. Molecular epidemiology of the integron-located VEB-1 extended-spectrum β-lactamase in nosocomial enterobacterial isolates in Bangkok, Thailand. J Clin Microbiol 2001; 39: 175–182.
Tawfik AF, Shibl AM, Aljohi MA, Altammami MA, Al-Agamy MH. Distribution of Ambler class A, B and D β-lactamases among Pseudomonas aeruginosa isolates. Burns 2012; 38: 855–860.
Lee S, Park YJ, Kim M, Lee HK, Han K, Kang CS et al. Prevalence of Ambler class A and D β-lactamases among clinical isolates of Pseudomonas aeruginosa in Korea. J Antimicrob Chemother 2005; 56: 122–127.
Naas T, Poirel L, Nordmann P. Minor extended-spectrum β-lactamases. Clin Microbiol Infect 2008; 14: 42–52.
Akinci E, Vahaboglu H. Minor extended-spectrum β-lactamases. http://dx.doi.org/101586/eri10119 2014; 8: 1251–1258.
Payasi A, Chaudhary M. Prevalence, Genotyping of Escherichia coli and Pseudomonas aeruginosa Clinical Isolates for Oxacillinase Resistance and Mapping Susceptibility Behaviour. J Microb Biochem Technol 2014; 6: 1948–5948.
Esenkaya Taşbent F, Özdemir M. [The presence of OXA type carbapenemases in Pseudomonas strains: first report from Turkey]. Mikrobiyol Bul 2015; 49: 26–34.
Walther-Rasmussen J, Høiby N. OXA-type carbapenemases. J Antimicrob Chemother 2006; 57: 373–383.
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright Notice
All articles submitted by the author and published in the Jurnal Profesi Medika : Jurnal Kedokteran dan Kesehatan, are fully copyrighted by the publication of Jurnal Profesi Medika : Jurnal Kedokteran dan Kesehatan under the Creative Commons Attribution-NonCommercial 4.0 International License by technically filling out the copyright transfer agreement and sending it to the publisher
Note :
The author can include in separate contractual arrangements for the non-exclusive distribution of rich versions of journal publications (for example: posting them to an institutional repository or publishing them in a book), with the acknowledgment of their initial publication in this journal.
Authors are permitted and encouraged to post their work online (for example: in an institutional repository or on their website) before and during the submission process because it can lead to productive exchanges, as well as earlier and more powerful citations of published works. (See Open Access Effects).