KAJIAN NUMERIK MASALAH SYARAT BATAS MELALUI PENYELESAIAN MATRIKS TRIDIAGONAL (Studi Kasus : Menghitung Potensial Listrik)

Authors

  • Tatik Juwariyah Fakultas Teknik,UPN “Veteran” Jakarta Kampus Jalan RS. Fatmawati Pondok Labu Jakarta 12450, Indonesia, Telp.021-7856971

DOI:

https://doi.org/10.54378/bt.v13i1.21

Keywords:

Gaussian elimination, finite different, tridiagonal matrix, Poisson’s equation

Abstract

A numerical study of the solution of boundary value problems with the tridiagonal matrix approach has been done. The case studied is computing the electrical potential expressed by 1D Poisson’s equation with boundary conditions. The 1D Poisson’s equation are then discreted with the finite different method so as to form a system of linier equations. The system of non homogeneous linear equations that can be formed is a tridiagonal matrix. Then the matrix is solved by Gaussian elimination algorithm. On this study, the algorithm is implemented on three programming languages namely, Fortran, Java and MATLAB.

References

Koonin, S.E.,. 1990. Computational Physics -Fortran Version. Addison-Wesley Pu. Co.Inc. New York.

Lam,C.Y.,1994. Applied Numerical Methods for Partial Differential Equations. Prentice Hall, London.

Rubin H.L., Manuel J.P., Cristian C.B., 2007. Computational Physics. Wiley VCH Verlag. Weinheim.

Sahid. 2005. Pengantar Komputasi Numerik dengan MATLAB. Penerbit Andi. Yogyakarta.

Suarga. 2007. Fisika Komputasi, Solusi Problema Fisika dengan MATLAB. Penerbit Andi. Yogyakarta.

Smith,G.D., 1969. Numerical Methods for Partial Differential Equations. Oxford University Press. London.

Yang W.Y, dkk. 2005. Apllied Numerical Methods using MATLAB. John Wiley & Sons. New Jersey.

Published

2017-08-02