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Abstract 

Hyperspectral unmixing is a process to identify the constituent materials and estimate the 

corresponding fractions from the mixture, nonnegative matrix factions ( NMF ) is suitable 

as a candidate for the linear spectral mixture mode, has been applied to the unmixing 

hyperspectral data. Unfortunately, the local minima is cause by the nonconvexity of the 

objective function  makes the solution nonunique, thus only the nonnegativity constraint is 

not sufficient enough to lead to a well define problems. Therefore, two inherent 

characteristic of hyperspectal data, piecewise smoothness ( both temporal and spatial ) of 

spectral data and sparseness of abundance fraction of every material, are introduce to the 

NMF. The adaptive potential function from discontinuity adaptive Markov random field 

model is used to describe the smoothness constraint while preserving discontinuities is 

spectral data.  At the same time two NMF algorithms, non smooth NMS and NMF with 

sparseness constraint, are used to quantify the degree of sparseness of material abundances. 

Experiment using the synthetic and real data demonstrate the proposed algorithms provides 

an effective unsupervised technique for hyperspectial unmixing. 
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INTRODUCTION 

Nonnegative Matrix Factorization 

(NMF) (Lee and Seung, 1999; Pattero and 

Tapper, 1994) has attracted many 

attentions for the past decade as a 

dimension reduction method in machine 

learning and data mining. NMF are 

considered as one of the highest 

dimensional data where each element has 

a nonnegative value, and provide a lower 

rank approximation that formed by factors 

whose elements are also nonnegative.  

Due to the nonnegativity, the factors 

of lower rank approximation given a 

natural interpretation: for each object is 

explained by an additive linear it 

combines of intrinsic ‘parts’ of the data 

(Lee and Seung, 1999). Numerous 

successes were reported in application 

areas including text mining (Pauca et all, 

2004), text clustering (xu et all, 2003), 

computer vision (Li et all, 2001), and 

cancer class discovery (Brunett et all, 

2004; Kim and Park, 2007). 

NMF can be traced back to 1970's 

(Notes from G. Golub) and it studies 

extensively by Paatero (Pattero and 

Tapper, 1994). Suggested that NMF 

factors contain coherent parts of the 

original images. They confirm that the 

difference between NMF and vector 

quantization (which is essentially the K-

means clustering).  However, later 

experiments (Hoyer,2004; Pattero and 

Tapper, 1994) do not support the coherent 

part interpretation of NMF. Moreover, 

most applications make use of the 
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clustering aspect of NMF, which is de-

emphasized by Lee and Seung (Lee and 

Seung, 1999). A recent theoretical 

analysis (Ding et all, 2005) shows the 

equivalence between NMF and K-means / 

spectral clustering. In these days, 

automatic organization of documents 

becomes crucial since the number of 

documents to be handled increases 

rapidly. Document clustering is an 

important task in organizing documents 

automatically, which simplifies many 

subsequent tasks such as retrieval, 

summarization, and recommendation.  

Document is represented as an unordered 

collection of words, which leads to a term-

document matrix for a set of documents to 

be processed.  

Term-document of matrix is nothing 

but co-occurrence table which is a simple 

case of dyadic data. Dyadic data refers to 

a domain with two finite sets of objects in 

which observations are made for dyads, 

i.e., pairs with one element from either set 

(Hofmann, Puzicha, & Jordan, 1999). 

Matrix factorization-based methods have 

established as a powerful techniques in 

dyadic data analysis where a fundamental 

problem, for example, is to perform 

document clustering or co-clustering 

words and documents given a term 

document matrix. Nonnegative matrix 

factorization (NMF) (Lee & Seung, 1999, 

2001) was successfully applied to a task 

of document clustering (Shahnaz et all, 

2006; Xu, Liu, & Gong, 2003), where a 

term-document matrix is taint into a 

product of two factor matrices, one of 

them is corresponds to a cluster canters 

(prototypes) and the other one which is 

associated with cluster indicator vectors. 

Orthogonal NMF, where an orthogonally 

constraint is imposed on a factor matrix in 

the decomposition, was shown to provide 

more clear interpretation on a link 

between clustering and matrix 

decomposition (Ding, Li, Peng, & Park, 

2006).  

New Extended algorithms for Non-

negative Matrix Factorization (NMF). The 

proposed of the  algorithms are to 

characterized by improving the efficiency 

and convergence rate, it can also be 

applied for various distributions of data 

and additive noise. Information theory and 

information geometry play an important 

roles in the derivation of new algorithms. 

Several loss or functions are used in 

information theory which allow us to 

obtain generalized forms of multiplicative 

NMF learning adaptive algorithms. 

Flexible and relaxed are also  forms of the 

NMF algorithms to raise convergence 

speed and impose an additional constraint 

of sparsity.  

The scope of these results is vast 

since discussed generalized divergence 

functions include a large number of useful 

loss functions such as the Amari α– 

divergence, Relative entropy, Bose-

Einstein divergence, Jensen-Shannon 

divergence, J-divergence, Arithmetic-

Geometric (AG) Taneja divergence, etc. 

Applied the developed algorithms 

successfully to Blind (or semi blind) 

Source Separation (BSS) where sources 

may be generally statistically dependent, 

however are subject to additional 

constraints such as nonnegativity and 

sparsity. Moreover, we applied a novel 

multilayer NMF strategy which improves 

performance of the most proposed 

algorithms (Cichocki et all, 2006). 

 

LITERATURE 

Non-negative matrix factorization 

can be revered to a paper of Paatero and 

Tapper in 1994 (Pattero and Tapper, 

1994). The objective were to perform 

factor analysis that is based on 

environmental data, the problem involves 

of finding a small number of root causes 

that can explain large set of 

measurements. Every factor is a positive 

combination of several elementary 

variables. In a real condition, a factor is 
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present (in some cases it has a certain 

positive effect) or it is absent (in some 

cases it has no effect). Therefore, it often 

makes sense to constrain the factors and 

their influences to be non-negative. 

The problem can be posed formally. 

Assuming that the columns of A are the 

measurements, the columns of V are the 

factors and the rows of H are the 

influences of each factor. Use W to denote 

the weight associated to each part, which 

indicates the level of confidence in that 

measurement. Paatero and Tapper 

advocate optimizing the functional  

Paatero and Tapper originally 

proposed using a constrained alternating 

least squares algorithm (ALS) to solve the 

problem. This method fixes V and solves 

the optimization with responds to H. after 

that it reverses the roles of the variables 

and repeats the process ad infinitum. The 

algorithm is initialized with different 

random matrices in an effort to obtain a 

global optimum. De Leeuw argues that 

ALS algorithms converge since they 

steadily decrease the objective function 

(Leeuw, 1994), but this convergence is not 

in the usual mathematical sense. 

Futher report of Paatero, introduced 

by Lee and Seung the concept of NNMF 

in a 1997 paper on unsupervised learning 

(Lee and Seung, 1997). They begin by 

viewing the following encoding problem. 

Presume that the columns of V are fixed 

feature vectors and that a is an input 

vector to be encoded. The goal is to 

minimize the reconstruction  

 ||α – Vh||   

   (2.1) 

Different learning techniques can be 

obtained from several constraints on the 

vector h. PCA corresponds to an 

unconstrained minimization, while Vector 

Quantization (VQ) requires that h equal 

one of the canonical basis vectors. Lee 

and Seung suggst that two techniques 

compromise among PCA and VQ. The 

first, convex coding requires the whole of 

h to be nonnegative numbers which count 

to one. So the encoded vector is the best 

approximation to the input from the 

convex hull of the signalize vectors. The 

second, conic coding requires only that 

the entries of h be nonnegative. Then the 

encoded vector is the best approximation 

to the input from the cone generated by 

the feature vectors. 

Future work of Lee and Seung 

consider how to find the best set of feature 

vectors for their new coding strategies. 

This leads them to the matrix 

approximation problem 

 ||A – VH||  

          (2.2) 

In this case columns of A contain 

training examples and V has far less 

columns than A. The two convex and 

conic coding, require V and H to be 

nonnegative. In addition, for convex 

coding, it forces the column sums of V 

and the row sums of H to equal one. 

To solve their minimization 

problems, they suggest an alternating 

projected gradient method. Namely is to 

fix V; that perform a step of gradient 

descent with regard to H; next step is to 

zero all the negative components of H. 

Invert the roles of the variables and repeat.  

To solve the convex coding 

problem, they also identify a penalty 

function into the minimization to preserve 

the row and column sums. The algorithms 

are executed a couple of times with a 

random starting points in an effort to 

come accross a global optimum.  

Using these algorithms, they found 

that convex coding discovers locally 

linear models of the data, at the same time 

conic coding discovers features in the 
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data. Their paper did not provide any 

proof of convergence, nor did it consider 

other types of algorithms which might 

apply. 

The 1999 article in Nature by Daniel 

Lee and Sebastian Seung (Lee and Seung, 

1999) started a flurry of research into the 

new Nonnegative Matrix Factorization. 

Hundreds of papers have cited Lee and 

Seung, but prior to its publication several 

lesser known papers by Pentti Paatero 

(Paatero and Tapper, 1994; Paatero, 1997, 

1999) actually deserve more credit for the 

factorization’s his- torical development. 

Though Lee and Seung cite Paatero’s 

1997 paper on his so-called positive 

matrix factorization in their Nature article, 

Paatero’s work is rarely cited by 

subsequent authors. This is partially due 

to Paatero’s unfortunate phrasing of 

positive matrix factorization, which is 

misleading as Paatero’s algorithms create 

a nonnegative matrix factorization. 

Moreover, Paatero actually published his 

initial factorization algorithms years 

earlier in (Paatero and Tapper, 1994). 

Since the introduction of the NMF 

problem by Lee and Seung, a great deal of 

published and unpublished work has been 

devoted to the analysis, extension, and 

application of NMF algorithms in science, 

engineering and medicine. The NMF 

problem has been cast into alternate 

formulations by various authors. (Lee and 

Seung, 2001) provided an information 

theoretic formulation based on the 

Kullback-Leibler divergence of A from 

WH that, in turn, lead to various related 

approaches. For example, (Cichocki et al., 

2006) have proposed cost functions based 

on Csisz´ar’s ϕ-divergence. (Wang et al., 

2004) propose a formulation that enforces 

constraints based on Fisher linear 

discriminant analysis for improved 

determination of spatially localized 

features. (Guillamet et al., 2001) have 

suggested the use of a diagonal weight 

matrix Q in a new factorization model, 

AQ ≈ WHQ, in an attempt to compensate 

for feature redundancy in the columns of 

W. This problem can also be alleviated 

using column stochastic constraints on H 

(Pauca et al., 2006).  

Other approaches that propose 

alternative cost function formulations 

include but are not limitedto (Hamza and 

Brady, 2006; Dhillon and Sra, 2005). A 

theoretical analysis of nonnegative matrix 

factorization of symmetric matrices can be 

found in (Catral et al., 2004). Various 

alternative minimization strategies for the 

solution of (8) have also been proposed in 

an effort to speed up convergence of the 

standard NMF iterative algorithm of Lee 

and Seung. (Lin, 2005b) has recently 

proposed the use of a projected gradient 

bound-constrained optimization method 

that is computationally competitive and 

appears to have better convergence 

properties than the standard 

(multiplicative update rule) approach.  

Use of certain auxiliary constraints 

in (8) may however break down the 

bound-constrained optimization 

assumption, limiting the applicability of 

projected gradient methods. (Gonzalez 

and Zhang, 2005) proposed accelerating 

the standard approach based on an 

interior-point gradient method. (Zdunek 

and Cichocki, 2006) proposed a quasi-

Newton optimization approach for 

updating W and H where negative values 

are replaced with small ǫ > 0 to enforce 

nonnegativity, at the expense of a 

significant increase in computation time 

per iteration.  

Further studies related to 

convergence of the standard NMF 

algorithm can be found in (Chu et al., 

2004; Lin, 2005a; Salakhutdinov et al., 

2003) among others. In the standard NMF 

algorithm W and H are initialized with 

random non- negative values, before the 

iteration starts. Various efforts have 

focused on alternate approaches for 
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initializing or seeding the algorithm in 

order to speed up or otherwise influence 

convergence to a desired solution. (Wild 

et al., 2003) and (Wild, 2002), for 

example, employed a spherical k-means 

clustering approach to initialize W. 

(Boutsidis and Gallopoulos, 2005) use an 

SVD-based initialization and show 

anecdotical examples of speed up in the 

reduction of the cost function. Effective 

initialization remains, however, an open 

problem that deserves further attention. 

Recently, various authors have 

proposed extending the NMF problem 

formulation to include additional auxiliary 

constraints on W and/or H. For example 

smoothness constraints have been used to 

regularize the computation of spectral 

features in remote sensing data (Piper et 

al., 2004; Pauca et al., 2005).(Chen and 

Cichocki, 2005) employed temporal 

smoothness and spatial correlation 

constraints to improve the analysis of 

EEG data for early detection of 

Alzheimer’s disease. (Hoyer, 2002, 2004) 

employed sparsity constraints on either W 

or H to improve local rather than global 

representation of data.  

The extension of NMF to include 

such auxiliary constraints is problem 

dependent and often reflects the need to 

compensate for the presence of noise or 

other data degradations in A. 

2.2.  Related work  

NMF problem is given a nonnegative  n x 

m  matrix V , find nonnegative  n x r  and  

r x m   matrix factors W and H such that 

the difference measure between  V and 

WH  is the minimum according to some 

cost function, that is 

 V ≈ WH    

          (2.3) 

NMF is a method to obtain a 

representation of data using nonnegative 

constraints. These constraints lead to a 

part-based representation because they 

allow only additive, not subtractive, 

combinations of the original data. For the 

th column of (9), that is vi = WHi, , where 

vi and  hi  are the ith column of V and H 

the ith observation is a nonnegative linear 

combination of the columns of  

W=(Wi,W2,…… ,Wr).  while the 

combinatorial coefficients are the 

elements of  hi Therefore, the W columns 

of , that is, W=(Wi,W2,…… ,Wr) , can be 

viewed as the basis of the data V when V  

is optimally estimated by its factors.  

The linear bar problem (Földiák, 

1990) is a blind separation of bars from  

their combinations. 8 nonnegative feature 

images (sources) sized including 4 vertical 

and 4 horizontal thin bar images, shown in 

Figure 1(a) are randomly mixtured to form 

1000 observation images, the first 20 

shown in Figure 1(b). The solution 

obtained from ICA and NMF with  are 

shown in Figures 1(c) and 1(d), 

respectively, indicating that NMF can 

fulfill the task very well compared with 

ICA . However, when we extended this 

bar problem into the one which is 

composed of two types of bars, thin one 

and thick one, NMF failed to estimate the 

original sources. For example, fourteen 

source images sized  with four thin 

vertical bars, four thin horizontal bars, 

three wide vertical bars, and three wide 

horizontal bars, shown in Figure 2(a), are 

nonnegative and evidently statistically 

dependent.  

These source images were randomly 

mixed with mixing matrix of elements 

arbitrarily chosen in (0, 1) to form 1000 

mixed images, the first 20 shown in 

Figure 2(b). The PE-NMF with parameter  

and  was performed on these mixed 

images for . The resultant images, which 

are shown in Figure 2(c), indicate that the 

sources were recovered successfully with 

the proposed PE-NMF. 
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(a) (b) (c) 

   

Figure II.1 Extended bar problem 

solution obtained from PE-NMF: (a) 

source images, (b) mixed images, (c) 

recovered images from PE-NMF. (Zhang 

et all, 2008) 

For comparison, many times we 

tried using ICA and NMF on this problem 

for avoiding obtaining local minimum 

solutions, but always failed to recover the 

original sources. Shown in Figures 2(a) 

and 2(b) are the examples of the recovered 

images with these two approaches. Notice 

that both the ones recovered from ICA 

and NMF are very far from the original 

sources, and even the number of sources 

estimated from the ICA is only 6, rather 

than 14. It is noticeable that the recovered 

images from the PE-NMF with some other 

parameter such as  and  are comparable to 

the ones shown in Figure 2(c), indicating 

that the proposed method is not very 

sensitive to the parameter selection for 

this example. 

 
 

(a) (b) 

  

Figure II.2 Recovered images from (a) 

ICA, and (b) NMF for the extended bar 

problem (Zhang et all, 2008). 

 

Blind Separation (BIS) 

Blind source separation (BSS) is a 

very active topic recently in signal 

processing and neural network fields 

(Hyvärinen et all, 2001; Hoyer and 

Hyvärinen, 2000). It is an approach to 

recover the sources from their 

combinations (observations) without any 

understanding of how the sources are 

mixed. For a linear model, the 

observations are linear combinations of 

sources, that is, , where  is an  matrix 

indicating  source signals each in -

dimensional space,  is an  matrix showing  

observations in dimensional space, and  is 

an  mixing matrix. Therefore, BSS 

problem is a matrix factorization, that is, 

to factorize observation matrix  into 

mixing matrix  and source matrix . 

Independent component analysis 

(ICA) has been found very effective in 

BSS for the cases where the sources are 

statistically independent. In fact, it 

factorizes the observation matrix  into 

mixing matrix and source matrix  by 

searching the most nongaussianity 

directions in the scatter plot of 

observations, and has a very good 

estimation performance of the recovered 

sources when the sources are statistically 

independent. This is based on the Central 

Limit Theorem, that is, the distribution of 

a sum (observations) of independent 

random variables (sources) tends toward a 

Gaussian distribution under certain 

conditions.  

This induces the two serious 

constraints of ICA to the application of 

BSS: 

a) The sources should be statistically 

independent to each other. 

b) The sources should not follow 

Gaussian distribution.  
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The performance of the recovered 

sources with ICA approach depends on 

the satisfactory of these two constraints, 

and decreases very rapidly when either of 

them is not satisfied. However in real 

world, there are many applications of 

blind source separation where the 

observations are nonnegative linear 

combinations of nonnegative sources, and 

the sources are statistically dependent to 

some extent.  

This is the model referred to as 

nonnegative linear model (NNLM), that 

is, with elements in both and  

nonnegative, and the rows in  (the 

sources) may be statistically dependent to 

some extent. One of the applications of 

this model is gene expression profiles, 

where each of the profiles, which is only 

in nonnegative values, represents a 

composite of more than one distinct but 

partially dependent sources (Zhang et all, 

2003), the profiles from normal tissue and 

from cancer tissue. What needs to be 

developed is an algorithm to recover 

dependent sources from the composite 

observations. 

To recognize that BSS for NNLM is 

a nonnegative matrix factorization, that is, 

to factorize into nonnegative  and 

nonnegative , where nonnegative matrix 

factorization (NMF) technique is 

applicable. Several approaches have been 

developed on applying NMF-based 

technique for BSS of NNLM. For 

example, we proposed a method for 

decomposition of molecular signatures 

based on BSS of nonnegative dependent 

sources with direct usage of standard 

NMF ( Zhang et all, 2003).  

Amari proposed a new algorithm for 

nonnegative matrix factorization in 

applications to blind source separation 

(Amari et all, 2006) by adding two 

suitable regularizations or penalty terms in 

the original objective function of the NMF 

to increase sparseness and/or smoothness 

of the estimated components. In addition, 

multilayer NMF was proposed by 

Cichocki and Zdunek for blind source 

separation (Cichocki and Zdunek, 2006), 

and nonsmooth nonnegative matrix 

factorization was proposed aiming at 

finding localized, part-based 

representations of nonnegative 

multivariate data items (Carazo et all, 

2006).  

Some other researches include the 

work of Zdunek and Cichocki, who 

proposed to take advantage of the second-

order terms of a cost function to overcome 

the disadvantages of gradient 

(multiplicative) algorithms for NMF for 

tackling the slow convergence problem of 

the standard NMF learning algorithms 

(Cichocki and Zdunek, 2007)  

The work by Ivica Kopriva and his 

colleagues, who proposed a single-frame 

blind image deconvolution approach with 

nonnegative sparse matrix factorization 

for blind image deconvolution 

(Borjanović, 2006); and the work by Liu 

and Zheng who proposed nonnegative 

matrix factorization-based methods for 

object recognition (Liu and Zheng, 2004). 

The NMF to pattern expression 

NMF (PE-NMF) from the view point that 

the basis vector is desired to be the one 

which can express the data most 

efficiently. Its successful application to 

blind source separation of extended bar 

problem, nonnegative signal recovery 

problem, and heterogeneity correction 

problem for real gene microarray data 

indicates that it is of great potential in 

blind separation of dependent sources for 

NNLM model.  

The loss function for the PE-NMF 

proposed here is a special case of that 

proposed in (Amari et all, 2006), and here 

not only the learning algorithm for the 

proposed PE-NMF approach is provided, 

but also the convergence of the learning 
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algorithm is proved by introducing some 

auxiliary function. For speeding up the 

learning procedure, a technique based on 

independent component analysis (ICA) is 

proposed, and has been verified to be 

effective for the learning algorithm to 

converge to desired solutions. 

Initialization of the Algorithm  

It seems that there are two main 

reasons for NMF to converge to undesired 

solutions. One is that the basis of a space 

may not be unique theoretically, and 

therefore separate runs of NMF may lead 

to different results. Another reason may 

come from the algorithm itself, that the 

loss function sometimes gets stock into 

local minimum during its iteration. By 

revisiting the loss function of the proposed 

PE-NMF, it is seen that similar to NMF, 

the above PE-NMF still sometimes gets 

stock into local minimum during its 

iteration, and/or the number of iterations 

required for obtaining desired solutions is 

very large.  

For the sake of these, an ICA-based 

technique was proposed for initializing 

source matrix instead of setting it to be a 

nonnegative matrix at random, ICA 

perform on the observation signals, and 

set the absolute of the independent 

components obtained from ICA to be the 

initialization of the source matrix. In fact, 

there are reasons that the resultant 

independent components obtained from 

ICA are generally not the original sources.  

One reason is the nonnegativity of 

the original sources but centering pre-

processes of the ICA makes each 

independent component both positive and 

negative in its elements: the means of 

each independent component is zero. 

Another reason is possibly dependent or 

partially independent original sources 

which does not follow the independence 

requirement of sources in the ICA study. 

Hence, the resultant independent 

components from ICA could not be 

considered as the recovery of the original 

sources. Even so, they still provide clues 

of the original sources: they can be 

considered as very rough estimations of 

the original sources. From this 

perspective, and by noticing that the 

initialization of the source matrix should 

be nonnegative, we set the absolute of the 

independent components obtained from 

ICA as the initialization of the source 

matrix for the proposed PE-NMF 

algorithm (Zhang, 2008). 

The proposed PE-NMF algorithms 

have been extensively tested for many 

difficult benchmarks for signals and 

images with various statistical 

distributions. Three examples will be 

given in the following context for 

demonstrating the effectiveness of the 

proposed method compared with standard 

NMF method and/or ICA method. In ICA 

approach here, we decenteralize the 

recovered signals/images/microarrays for 

its nonnegativity property for 

compensating the centering preprocessing 

of the ICA approach. The NMF algorithm 

is simply the one proposed in (Lee and 

Seung, 1999) and the ICA algorithm is 

simply the FastICA algorithm generally 

used in many applications. The examples 

include blind source separation of 

extended bar problem, mixed signals, and 

real microarray gene expression data in 

which heterogeneity effect occurs. 

1.3.2.  Independent Component 

Analysis (ICA) 

The proposed PE-NMF algorithms 

have been extensively tested for many 

difficult benchmarks for signals and 

images with various statistical 

distributions. Three examples will be 

given in the following context for 

demonstrating the effectiveness of the 

proposed method compared with standard 

NMF method and/or ICA method. In ICA 

approach, decenteralize the recovered 
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signals/images/microarrays for its 

nonnegativity property for compensating 

the centering preprocessing of the ICA 

approach.  

 

 1.1 Extended Lee-Seung Algorithms 

and Fixed Point Algorithms. 

Although the standard NMF 

(without any auxiliary constraints) 

provides sparseness of its component, it 

may achieve some control of this sparsity 

as well as smoothness of components by 

imposing additional constraints in addition 

to non-negativity constraints. In fact, it 

may incorporate smoothness or sparsity 

constraints in several ways (Hoyer, 2004). 

One of the simple approach is to 

implement in each iteration step a 

nonlinear projection which can increase 

the sparseness and/or smoothness of 

estimated components. An alternative 

approach is to add to the loss function 

suitable regularization or penalty terms. 

Consider the following constrained 

optimization problem: 

 D (A,X) = ||Y-AX|| + αAJA(A) 

+ αXJX(X)             (2.4) 

where αA and αX ≥ 0 are nonnegative 

regularization parameters and terms JX(X) 

and JA(A) are used to enforce a certain 

application-dependent characteristics of 

the solution. As a special practical case  

have JX(X) = _jk fX(xjk), where f(·) are 

suitably chosen functions which are the 

measures of smoothness or sparsity. In 

order to achieve sparse representation 

usually choose f(xjk) = |xjk| or simply 

f(xjk) = xjk, or alternatively f(xjk) = xjk 

ln(xjk) with constraints xjk ≥ 0. Similar 

regularization terms can be also 

implemented for the matrix A. Note that  

treat both matrices A and X in a 

symmetric way. Applying the standard 

gradient descent approach,  

ɑij←ɑij-ɳɑ ,      

xjk←xjk−ɳjk   (2.5) 

where ηij and ηjk are positive learning 

rates. The gradient components can be 

expressed in a compact matrix form as: 

(Lee and Seung, 1999) 

  = [ -YXT+ AXXT ]ij  +  a ,

                  (2.6) 

  = [ -ATY  + ATAX]ij + a .          

        (2.7) 

Here is the Lee and Seung approach to 

choose specific learning rates 

  ɳij = ,  ɳik = 

                 (2.8) 

that leads to a generalized robust 

multiplicative update rules: 

   aij ← aij  , 

   (2.9) 

xjk ← xjk  ,                 

         (2.10) 

where the nonlinear operator is defined as 

[x]ε = max{ε, x} with a small positive ε 

and the functions ϕA(aij) and ϕX(xjk) are 

defined as 

φA(aij) =        φx(Xjk) = .         

  (2.11) 

Typically, ε = 10−16 is introduced in 

order to ensure non-negativity constraints 

and avoid possible division by zero. The 
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above Lee-Seung algorithm can be 

considred as an extension of the well-

known ISRA (Image Space 

Reconstruction Algorithm) algorithm. The 

above algorithm reduces to the standard 

Lee-Seung algorithm for αA = αX = 0. In 

the special case, by using the l1-norm 

regularization terms f(x) = _x_1 for both 

matrices X and A the above multiplicative 

learning rules can be simplified as 

follows: 

aij ← aij  , xjk ← 

xjk  ,  

 (2.12) 

with normalization in each iteration 

as follows aij ← aij/_m i=1 aij . Such 

normalizationis necessary to provide 

desired sparseness. Algorithm (11) 

providesa sparse representation of the 

estimated matrices and the sparseness 

measureincreases with increasing values 

of regularization coefficients, typically αX 

=0.01 ∼0.5.It is worth to note that we can 

derive as alternative to the Lee-Seung 

algorithm(11) a Fixed Point NMF 

algorithm by equalizing the gradient 

components of (5)-(6) (for l1-norm 

regularization terms) to zero (Lee and 

Seung, 1997): 

XD

   (2.13) 

XD

. 

   (2.14) 

These equations suggest the following 

fixed point updates rules: 

X ← max { ℰ, [ (ATA) + ( AT Y - 

 = [ (ATA) + (ATY -       

(2.15) 

A ← max { ℰ, [ (YXT - )( XXT 

 = [ (YXT -        

(2.16) 

where [A]+ means Moore-Penrose 

pseudo-inverse and max function is 

component wise. The above algorithm can 

be considered as nonlinear projected 

Alternating Least Squares (ALS) or 

nonlinear extension of EM-PCA 

algorithm. 

 

RELATED WORK 

The proposed PE-NMF algorithms 

have been extensively tested for many 

difficult benchmarks for signals and 

images with various statistical 

distributions. Three examples will be 

given in the following context for 

demonstrating the effectiveness of the 

proposed method compared with standard 

NMF method and/or ICA method. In ICA 

approach, decenteralize the recovered 

signals/images/microarrays for its 

nonnegativity property for compensating 

the centering preprocessing of the ICA 

approach.  

The NMF algorithm is simply the 

one proposed in (Lee and Seung, 1999) 

and the ICA algorithm is simply the 

FastICA algorithm generally used in many 

applications. The examples include blind 

source separation of extended bar 

problem, mixed signals, and real 

microarray gene expression data in which 

heterogeneity effect occurs. 

Lee and Seung work also shows a 

magnificent result on comparing the NMF 

algorithms using the BSS technique, it 

works have shown that, the observations 

are linear combinations of sources, that is, 

, where  is an  matrix indicating  source 

signals each in -dimensional space,  is an  

matrix showing  observations in 
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dimensional space, and  is an  mixing 

matrix. Therefore, BSS problem is a 

matrix factorization, that is, to factorize 

observation matrix  into mixing matrix  

and source matrix . 

 

RESERCH FRAMEWORK 

The methodology consists of six 

main steps of literature review until thesis 

writing. The proposed of nonnegative 

matrix factorization for blind image 

separation. Using the Nonnegative matrix 

factorization for Blind Image Seperatinon 

the original image will transform into a set 

of mixture of image, in this case it can 

reduce the noise from the original image 

(genererated image) into a new set of 

image by using the extended algorithm.  

The general workflow of the methodology 

is illustrated. 
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