PERANCANGAN ULANG TURBIN KAPLAN POROS VERTIKAL DI PLTM PLUMBUNGAN

Authors

  • Rudi Saputra Program Studi Teknik Mesin Institut Sains dan Teknologi Nasional
  • Taff Liichan

DOI:

https://doi.org/10.54378/bt.v14i2.354

Keywords:

Kaplan Turbine, Head, Power Turbine, Runner, Plumbungan PLTM Turbine Caplane

Abstract

Hydroelectric Power Plants (PLTA) in Indonesia have been around since 1926, and are still operating today. The Indonesian government represented by PT. PLN (State Electricity Company) will continue to maintain, operate and maintain old hydropower plants. So far, the development and development of PLTMH in Indonesia still uses consultants / contractors and its manufacturing is from overseas, even components (spare parts) are also still dependent on the technology producers themselves, the majority of which are foreign countries. Imports cannot be avoided, this results in us being vulnerable to several things, fluctuations in foreign exchange rates, and dependence on foreign producers. But with the increasing understanding of national resilience, especially in terms of national industrial independence, several national companies began to carry out reconstruction and fabrication for hydroelectric power plants. This is encouraging the author to learn to know, understand, how to plan the main parts of the Kaplan Turbine which include: runner, shaft, spiral casing, stacker, draft tube. In this plan the author focuses on calculating the main dimensions of the Kaplan Turbine. From the results of the design and calculation, the appropriate type of turbine is Kaplan Turbine as an electric generator drive in Plumbungan PLTM with installed power of 1.2 MW, maximum head of 21.16 meters and water discharge requirement of 7.68 m3 / sec. Plumbungan PLTM installation consists of turbines, turbine supporting equipment, and turbine operation aids. The turbine installation component consists of: suction pipe (penstock), turbine house (spiral casing), runner, runner shaft, shaft support bearing and draft tube.

References

Banga & Sharma., Hydraulik Machines, Khuaum Publisher, Delhi, India.

Dake JMK., 1985, Hydraulika Teknik, Erlangga, Jakarta.

Dandekar& Sharma, 1979 “Water Power Engineering”, Viskositas Publishing PVT Ltd., New Delhi.

Fritz Dietsel, 1996, Turbin, Pompa dan Kompresor, Penerbit Erlangga, Jakarta

J.K.Gupta,1995, Machine Design, Eurasia Publishing House (Pvt) LTD Ram Nagar, New Delhi.

Joseph E Shigley, 2001, Mechanical Engineering Design, Sixth Edition, Penerbit McGraw-Hill, New York.

Kamimoto Goro & Hisashi Ando & Akamatsu Teruaki, 2001 “Analisis Aliran Dalam Turbin Air Tipe Aliran Aksial”termuat di: www.educepedia.be/education/physicsenergyhydro.htm diakses 23 Juni 2010.

Lal Jagdish., 1975, Hydraulic Machine, McGraw-Hill, Delhi, India.

G. Niemann, 1990, Desain dan Kalkulasi dari Sambungan, Bantalan, dan Poros, Penerbit Erlangga, Jakarta.

PLN Sektor Mrica, PLTA PB. Soedirman, "Petunjuk Operasi dan Pemeliharaan Turbin, Katup dan Peralatan Bantu", Bogor.

Rifai, 2000, Perancangan Turbin Air Kaplan, IST Akprind, Yogyakarta.

Rubianto, 2006, Perancangan Ulang Runner Turbin Air Jenis Kaplan Dengan Daya 6,5 MW Pada PLTA Wonogiri, IST Akprind, Yogyakarta.

S, Radler Prof. Dr., 1981, “Desaign Runner Of Kaplan Turbin”, Intitute for Water Management, University for Soil Culture, Vienna.

Subhan Nafis. 2005. “Dasar Perencanaan PLTMH”. Jurnal Institut Teknologi Surabaya, Surabaya termuat di: www.wikipedia.com diakses 21 Juni 2010.

Sularso & Kyokatsu, 1995, Dasar-Dasar Perencanaan Mesin, Cetakan ke-sembilan, Penerbit Pradnya Paramita, Jakarta.

Sujatmika & Denny Agung, 2008, “Perencanaan Turbin Kaplan”, Jurnal Institut Teknologi Surabaya, Surabaya termuat di: www.wikipedia.com diakses 23 Juni 2010.

W. Arismunandar, Penggerak Mula Turbin, Penerbit Erlangga, Jakarta

Warnick C.C., 1984, Hydropower Engineering, Professor of Civil Engineering, University of Indaho Moscow, Indaho.

Published

2018-12-17